Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Joslin researchers identify new source of insulin-producing cells

25.11.2008
Study finds pancreatic progenitors exist after birth, may offer hope in fight against diabetes

Researchers at the Joslin Diabetes Center have shown that insulin-producing pancreatic beta cells can form after birth or after injury from progenitor cells within the pancreas that were not beta cells, a finding that contradicts a widely-cited earlier study that had concluded this is not possible.

The study, published online this week in the Proceedings of the National Academy of Sciences Early Edition, identifies the source of the progenitor cells as being pancreatic duct cells.

"This means that there is a population of pancreatic cells that can be stimulated, either within the body or outside the body, to become new beta cells, the cells that are lacking in diabetes," said Susan Bonner-Weir, Ph.D., the study's lead researcher and a Senior Investigator in the Section on Islet Transplantation and Cell Biology at Joslin and Associate Professor of Medicine at Harvard Medical School.

The experiments, conducted in animal models, suggest a new source of beta cells for replacement therapy to treat or cure diabetes.

In type 1 diabetes, the pancreas produces little or no insulin since the insulin producing beta cells are destroyed by the body's own immune system. While transplantation of human islets from donor pancreases has been successful in getting people with type 1 diabetes off insulin treatment, this insulin independence is only successful for a few years.

"One of the problems with islet transplantation is that while the proof of principal is there, we don't have enough islets to transplant and they go through a traumatic process during isolation," said Bonner-Weir. "Many islets are not in the greatest condition after being isolated from a pancreas."

The two major obstacles to islet transplants are the need for continued use of immunosuppressive drugs to prevent both rejection and return of autoimmune destruction and the lack of a reliable source of insulin producing islet cells.

Bonner-Weir's main research focus is the search for new sources of insulin-producing islet cells. In this study, in experiments in mice, Bonner-Weir's group used a similar lineage tracing system employed by a group from Dr. Douglas Melton's lab at Harvard. That group concluded in a paper published in Nature in 2004 that after birth, new beta cells only result from division of preexisting beta cells and that beta cells do not form from progenitor cells after birth.

"That conclusion, coming from such a well-respected group, was taken by many as fact and cast a cloud over this important research area," Bonner-Weir said.

However, earlier this year a group led by Xiaobo Xu in Belgium showed that islet progenitor cells within the adult pancreas could be activated to increase the number of beta cells by the process of differentiation rather than self-duplication, but the paper did not indicate the origin of these cells.

Bonner-Weir's paper complements the Belgium study by identifying the source of these cells as pancreatic duct cells.

In addition to finding that these duct cells can differentiate into insulin producing islet cells after birth and in regeneration after injury, the study showed that they can also become new acinar cells, a finding that has potential implications for pancreatic cancer, since the origin of the cancerous cells has been disputed.

Two lineage tracing experiments involved genetically marking the ductal cells and then following them. The first experiment, which involved one-month-old mice, found that between 30 to 40 percent of islets had beta cells that had formed after birth from duct cells. In the second experiment, conducted in adult mice, the Joslin researchers used same regeneration model employed in the Belgian study which is based on tying off the main pancreatic duct. Beyond the area of the tie some cells die, but others grow to regenerate the whole structure. In these adult mice, new islets and new acinar cells were again shown to have been formed from the preexisting duct cells.

"Our data provide strong support to the concept of a shared lineage of ductal, acinar and islet cells after birth, even in the adult. This means that there is a population of cells - we don't know if it is all of the cells or just some - that can be stimulated to become new islet cells," Bonner-Weir said.

She concluded: "Our identification of a differentiated pancreatic cell type as an in vivo progenitor for all differentiated pancreatic cell types has implications for a potential expandable source for new islets for replacement therapy for diabetes. While the ideal therapy would be to have those with diabetes regenerate their own islet cells, that is still a long way off."

Marg Bonilla | EurekAlert!
Further information:
http://www.joslin.org/

More articles from Life Sciences:

nachricht Unique genome architectures after fertilisation in single-cell embryos
30.03.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

NASA laser communications to provide Orion faster connections

30.03.2017 | Physics and Astronomy

Reusable carbon nanotubes could be the water filter of the future, says RIT study

30.03.2017 | Studies and Analyses

Unique genome architectures after fertilisation in single-cell embryos

30.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>