Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Joined at the genes?

25.05.2010
Genomic data reveal surprising insights into the essential partnership between a widespread plant pest and a symbiotic bacterium dwelling within its cells

Aphids leave behind a trail of damaged crops in pursuit of their diet of sap, and a better understanding of the roughly 5,000 known aphid species could prove invaluable in developing safeguards against this agricultural menace.

Unfortunately, they represent a particularly complicated family of insects. For one thing, even genetically identical individuals can manifest dramatically different traits depending on environmental conditions. Furthermore, aphids cannot survive on sap alone and depend on the presence of symbiotic bacteria to sustain them.

Accordingly, when the International Aphid Genome Consortium (IAGC) decided to determine the first complete aphid genomic sequence, they targeted the pea aphid, Acyrthosiphon pisum—a reasonably well-understood species. “As this species has long been used for research, a relatively large amount of biological and genetic information is available,” explains Atsushi Nakabachi, a researcher at the RIKEN Advanced Science Institute and IAGC project leader.

IAGC scientists recently published a ‘first draft’ genome containing 464 million bases of assembled sequence data from A. pisum, and have tentatively identified over 34,000 putative genes—although many are purely hypothetical1. Fortunately, Nakabachi and others have also compiled a library of over 50,000 full-length cDNAs—clones directly derived from expressed genes—which should greatly facilitate genome annotation and characterization of gene function.

The IAGC has also gathered genomic data from Buchnera aphidicola, the primary pea aphid endosymbiont, and Nakabachi’s team has been steadily working to untangle the complicated relationship between bug and bacterium3. Over the past 100 million years, Buchnera and the aphid have forged a highly interdependent relationship; today, these bacteria lack numerous essential genes whose function appears to be compensated for by their host species, raising questions of whether these genes were incorporated into the aphid genome over the course of evolution.

Careful analysis of the aphid genome revealed at least eight functional aphid genes of apparent bacterial origin, seven of which are highly expressed in symbiont-containing bacteriocyte cells. Unexpectedly, however, all of these appear to originate from non-Buchnera bacteria, suggesting that these symbionts are being sustained by contributions from other species. “Researchers have hypothesized that at least part of ancestral Buchnera genes have been transferred to the host aphid genome, reminiscent of organelles such as mitochondria,” says Nakabachi. “The present study rules out this hypothesis and reveals that the case is more complicated.” He now hopes to uncover more practical details of this genetic partnership, which could eventually reveal useful vulnerabilities to exploit for pest control.

The corresponding author for this highlight is based at the Miyagishima Initiative Research Unit, RIKEN Advanced Science Institute

Journal information

1. The International Aphid Genomics Consortium. Genome sequence of the pea aphid Acyrthosiphon pisum. PLoS Biology 8, e1000313 (2010)
2. Shigenobu, S., Richards, S., Cree, A.G., Morioka, M., Fukatsu, T., Kudo, T., Miyagishima, S., Gibbs, R.A., Stern, D.L. & Nakabachi, A. A full-length cDNA resource for the pea aphid, Acyrthosiphon pisum. Insect Molecular Biology 19, 23–31 (2010)

3. Nikoh, N., McCutcheon, J.P., Kudo, T., Miyagishima, S., Moran, N.A. & Nakabachi, A. Bacterial genes in the aphid genome: absence of functional gene transfer from Buchnera to its host. PLoS Genetics 6, e1000827 (2010)

gro-pr | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6275
http://www.researchsea.com

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>