Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Joined at the genes?

25.05.2010
Genomic data reveal surprising insights into the essential partnership between a widespread plant pest and a symbiotic bacterium dwelling within its cells

Aphids leave behind a trail of damaged crops in pursuit of their diet of sap, and a better understanding of the roughly 5,000 known aphid species could prove invaluable in developing safeguards against this agricultural menace.

Unfortunately, they represent a particularly complicated family of insects. For one thing, even genetically identical individuals can manifest dramatically different traits depending on environmental conditions. Furthermore, aphids cannot survive on sap alone and depend on the presence of symbiotic bacteria to sustain them.

Accordingly, when the International Aphid Genome Consortium (IAGC) decided to determine the first complete aphid genomic sequence, they targeted the pea aphid, Acyrthosiphon pisum—a reasonably well-understood species. “As this species has long been used for research, a relatively large amount of biological and genetic information is available,” explains Atsushi Nakabachi, a researcher at the RIKEN Advanced Science Institute and IAGC project leader.

IAGC scientists recently published a ‘first draft’ genome containing 464 million bases of assembled sequence data from A. pisum, and have tentatively identified over 34,000 putative genes—although many are purely hypothetical1. Fortunately, Nakabachi and others have also compiled a library of over 50,000 full-length cDNAs—clones directly derived from expressed genes—which should greatly facilitate genome annotation and characterization of gene function.

The IAGC has also gathered genomic data from Buchnera aphidicola, the primary pea aphid endosymbiont, and Nakabachi’s team has been steadily working to untangle the complicated relationship between bug and bacterium3. Over the past 100 million years, Buchnera and the aphid have forged a highly interdependent relationship; today, these bacteria lack numerous essential genes whose function appears to be compensated for by their host species, raising questions of whether these genes were incorporated into the aphid genome over the course of evolution.

Careful analysis of the aphid genome revealed at least eight functional aphid genes of apparent bacterial origin, seven of which are highly expressed in symbiont-containing bacteriocyte cells. Unexpectedly, however, all of these appear to originate from non-Buchnera bacteria, suggesting that these symbionts are being sustained by contributions from other species. “Researchers have hypothesized that at least part of ancestral Buchnera genes have been transferred to the host aphid genome, reminiscent of organelles such as mitochondria,” says Nakabachi. “The present study rules out this hypothesis and reveals that the case is more complicated.” He now hopes to uncover more practical details of this genetic partnership, which could eventually reveal useful vulnerabilities to exploit for pest control.

The corresponding author for this highlight is based at the Miyagishima Initiative Research Unit, RIKEN Advanced Science Institute

Journal information

1. The International Aphid Genomics Consortium. Genome sequence of the pea aphid Acyrthosiphon pisum. PLoS Biology 8, e1000313 (2010)
2. Shigenobu, S., Richards, S., Cree, A.G., Morioka, M., Fukatsu, T., Kudo, T., Miyagishima, S., Gibbs, R.A., Stern, D.L. & Nakabachi, A. A full-length cDNA resource for the pea aphid, Acyrthosiphon pisum. Insect Molecular Biology 19, 23–31 (2010)

3. Nikoh, N., McCutcheon, J.P., Kudo, T., Miyagishima, S., Moran, N.A. & Nakabachi, A. Bacterial genes in the aphid genome: absence of functional gene transfer from Buchnera to its host. PLoS Genetics 6, e1000827 (2010)

gro-pr | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6275
http://www.researchsea.com

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>