Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Joined at the genes?

25.05.2010
Genomic data reveal surprising insights into the essential partnership between a widespread plant pest and a symbiotic bacterium dwelling within its cells

Aphids leave behind a trail of damaged crops in pursuit of their diet of sap, and a better understanding of the roughly 5,000 known aphid species could prove invaluable in developing safeguards against this agricultural menace.

Unfortunately, they represent a particularly complicated family of insects. For one thing, even genetically identical individuals can manifest dramatically different traits depending on environmental conditions. Furthermore, aphids cannot survive on sap alone and depend on the presence of symbiotic bacteria to sustain them.

Accordingly, when the International Aphid Genome Consortium (IAGC) decided to determine the first complete aphid genomic sequence, they targeted the pea aphid, Acyrthosiphon pisum—a reasonably well-understood species. “As this species has long been used for research, a relatively large amount of biological and genetic information is available,” explains Atsushi Nakabachi, a researcher at the RIKEN Advanced Science Institute and IAGC project leader.

IAGC scientists recently published a ‘first draft’ genome containing 464 million bases of assembled sequence data from A. pisum, and have tentatively identified over 34,000 putative genes—although many are purely hypothetical1. Fortunately, Nakabachi and others have also compiled a library of over 50,000 full-length cDNAs—clones directly derived from expressed genes—which should greatly facilitate genome annotation and characterization of gene function.

The IAGC has also gathered genomic data from Buchnera aphidicola, the primary pea aphid endosymbiont, and Nakabachi’s team has been steadily working to untangle the complicated relationship between bug and bacterium3. Over the past 100 million years, Buchnera and the aphid have forged a highly interdependent relationship; today, these bacteria lack numerous essential genes whose function appears to be compensated for by their host species, raising questions of whether these genes were incorporated into the aphid genome over the course of evolution.

Careful analysis of the aphid genome revealed at least eight functional aphid genes of apparent bacterial origin, seven of which are highly expressed in symbiont-containing bacteriocyte cells. Unexpectedly, however, all of these appear to originate from non-Buchnera bacteria, suggesting that these symbionts are being sustained by contributions from other species. “Researchers have hypothesized that at least part of ancestral Buchnera genes have been transferred to the host aphid genome, reminiscent of organelles such as mitochondria,” says Nakabachi. “The present study rules out this hypothesis and reveals that the case is more complicated.” He now hopes to uncover more practical details of this genetic partnership, which could eventually reveal useful vulnerabilities to exploit for pest control.

The corresponding author for this highlight is based at the Miyagishima Initiative Research Unit, RIKEN Advanced Science Institute

Journal information

1. The International Aphid Genomics Consortium. Genome sequence of the pea aphid Acyrthosiphon pisum. PLoS Biology 8, e1000313 (2010)
2. Shigenobu, S., Richards, S., Cree, A.G., Morioka, M., Fukatsu, T., Kudo, T., Miyagishima, S., Gibbs, R.A., Stern, D.L. & Nakabachi, A. A full-length cDNA resource for the pea aphid, Acyrthosiphon pisum. Insect Molecular Biology 19, 23–31 (2010)

3. Nikoh, N., McCutcheon, J.P., Kudo, T., Miyagishima, S., Moran, N.A. & Nakabachi, A. Bacterial genes in the aphid genome: absence of functional gene transfer from Buchnera to its host. PLoS Genetics 6, e1000827 (2010)

gro-pr | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6275
http://www.researchsea.com

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>