Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Japanese researchers provide the first large-scale identification of protein control sites from the model plant Arabidopsis

06.10.2008
A team of Japanese biologists, including Ken Shirasu from the RIKEN Plant Science Center in Yokohama, has provided a snap-shot of the proteins regulated by phosphate, collectively known as the ‘phospho-proteome’, in living plant cells. This is the first time such a large-scale comprehensive analysis has been performed in plants.

In plants, protein modification by the introduction of a phosphate group, a process known as phosphorylation, regulates cell signaling in response to a wide range of external and internal stimuli such as pathogen attack or hormone release (Fig. 1). Nearly all cellular processes are controlled by switching proteins on and off using phosphate, a molecule containing phosphorous and oxygen atoms. Phosphate modulates protein functions by bonding to an amino acid residue, such as serine, threonine or, less commonly, tyrosine.

The whole-cell approach

In previous studies of phosphorylation in plants, only parts of the cell such as the plasma membrane were assessed. Uniquely, the team, led by Shirasu and Yasushi Ishihama from Keio University, Tsuruoka, used unfractionated, whole cells to provide an overall view of phosphorylation in all the cellular components of the model plant Arabidopsis thaliana (Fig. 2). The team employed six procedures to isolate phosphorylated peptides—ensuring a wide variety of peptides were captured—and analyzed them using mass spectrometry, a technique that identifies the chemical composition of molecules.

Their approach identified 2,172 unique phosphorylation sites on 1,346 proteins from Arabidopsis cells. Over 85% of the identified phosphoproteins were novel, establishing this data-set—published recently in Molecular Systems Biology1—as the largest available to date. “This work is just the beginning of a long journey to understand the ‘complete map’ of phosphorylation sites in plants,” says Shirasu.

Firstly, the researchers surveyed the characteristics of phosphoproteins and phosphorylation sites in Arabidopsis. Then they analyzed the abundance, distribution, molecular and biological functions and cellular localization of identified phosphoproteins and compared these traits with those of all proteins encoded by the Arabidopsis genome. The distributions of the molecular functions of the phosphoproteins were aligned to those of all genome-encoded proteins, suggesting that most cellular processes in Arabidopsis are likely to be regulated at least in part by various phosphorylation events. They also showed that all sub-cellular compartments of the plant cells investigated contained phosphorylated proteins, but that nuclear proteins were the most popular targets for phosphate groups with approximately 40% of phosphorylation events taking place in the cells’ headquarters.

An unexpected similarity between plants and humans

Shirasu, Ishihama and colleagues found phosphorylation to be focused mainly on serine and threonine; 85.0 and 10.7% of all phosphate introductions took place on these amino acid residues. Surprise came when 94 of the 2,172 identified sites of phosphorylation were found to occur on tyrosine residues. This level of phosphotyrosine was much higher than expected, explains Shirasu, indicating that the extent of tyrosine phosphorylation has been largely underestimated in plants. At 4.3%, the level of phosphorylation events that occur on tyrosine is similar to that found in humans, where the range is between 1.8 and 6%.

Intriguingly, humans employ over 90 enzymes, collectively known as tyrosine kinases, that work specifically to phosphorylate tyrosine residues, but these enzymes do not exist in Arabidopsis. The researchers investigated the mechanism that might be used by plants to attain this high level of tyrosine phosphorylation by comparing patterns of amino acids around tyrosine phosphorylation sites in Arabidopsis and humans. They found most of the plant-based motifs to be novel and distinct from those in humans, indicating that tyrosine phosphorylation in Arabidopsis is carried out by a novel class of kinases that are specific to plants. Candidates for the role could include multi-specific serine/threonine/tyrosine protein kinases or enzymes called tyrosine-specific protein kinase-like kinases (TKLs), which are especially abundant in plants.

The function of TKLs remains unclear, but their plentitude in plants suggests that they are significant in catalyzing molecular reactions. It will be of particular interest to investigate whether plant TKLs possesses tyrosine phosphorylation activity, according to Shirasu.

Elucidating the roles of key players

Tyrosine phosphorylation plays a central role in a variety of signal transduction pathways regulating animal cell growth and differentiation, but its relevance in plants is still largely unknown. Shirasu, Ishihama and colleagues found that many tyrosine phosphorylated proteins are involved in cellular signaling and are likely to be crucial players in the regulation of cellular processes.

Trends in the protein-based position of phosphorylation sites can provide clues to their functions. The research team investigated whether the phosphorylation sites identified in this study are located in important areas known as conserved domains. These domains are conserved through evolutionary time and contain essential features that perform vital protein functions. Phosphorylation sites involving serine and threonine were found to be located mainly outside conserved domains, but, strikingly, nearly half of the phosphorylated tyrosine residues were located on conserved domains. These data indicate that tyrosine phosphorylation may have more impact on key regulatory processes compared to serine and threonine phosphorylation.

To further enrich the map of phosphorylated proteins, the researchers will need to extract proteins from different cell types over various developmental stages and under different environmental cues such as light, temperature, humidity and pathogen exposure. A future goal of the team is to determine the role of phosphorylation in plant immunity by isolating proteins that are phosphorylated when plants encounter pathogens. According to Shirasu, “we show here that the technology is ready and the next stage is to ‘just do it’.”

Reference
1. Sugiyama, N., Nakagami, H., Mochida, K., Daudi, A., Tomita, M., Shirasu, K. & Ishihama, Y. Large-scale phosphorylation mapping reveals the extent of tyrosine phosphorylation in Arabidopsis. Molecular Systems Biology 4, 193 (2008).

The corresponding author for this highlight is based at the RIKEN Plant Immunity Research Group

Ken Shirasu

Ken Shirasu graduated from the Department of Agricultural Chemistry at the University of Tokyo in 1988. He moved to the USA and earned his PhD in genetics at the University of California, Davis, in 1993. He then obtained a Salk/Noble postdoctoral fellowship to study plant immunity at the Salk Institute in the USA. In 1996 Shirasu moved to the Sainsbury Laboratory in the UK as a researcher, where he later became a group leader in 2000. In 2006 he returned to Japan and became a group director at RIKEN Plant Science Center. He has also been a visiting professor in the Department of Biological Sciences in the University of Tokyo since 2008. His research focuses on molecular elucidation of the mechanism for plant immunity.

Saeko Okada | ResearchSEA
Further information:
http://www.rikenresearch.riken.jp/research/525/
http://www.researchsea.com

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>