Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

IUPUI chemists develop Distributed Drug Discovery: Finding drugs for neglected diseases

17.06.2009
Researchers from Indiana University-Purdue University Indianapolis (IUPUI) have developed Distributed Drug Discovery (D3), a new low-cost strategy to accelerate the discovery of drugs to treat neglected diseases such as tuberculosis, leprosy, leshmaniasis, dengue fever, and Chagas disease.

Even in times of economic prosperity, the pharmaceutical industry has often been reluctant to get involved in developing treatments for diseases that occur primarily in low income countries. The low cost D3 approach, involving distributed global educational resources at the early stage of discovery, is even more attractive in this time of global economic downturn.

A distributed problem solving process breaks large problems into small pieces which are "distributed" to multiple, small, low-cost sites to obtain a solution. For decades astronomers have enlisted the help of the public, asking individuals around the world to leave their home computers on overnight. While normally idle, each one of these computers looks for patterns in a small subset of the incredibly large amount of space noise signals received by arrays of radio telescopes scanning the skies.

Two studies, published this year in the Journal of Combinatorial Chemistry, detail the first two steps in D3, developed by William Scott, Ph.D., research professor, and Martin J. O'Donnell, Ph.D., IUPUI Chancellor's Professor, both of the Department of Chemistry and Chemical Biology at IUPUI.

D3 uses a distributed problem approach at all three key stages of drug discovery. Step one is identifying candidate drug molecules. To do this, IUPUI researchers are soliciting the global advice of computational experts in neglected disease areas and utilizing the computational power of multiple personal computers around the world to scan the almost infinite number of molecules which the D3 synthesis process could make to identify the smaller number of drug candidate molecules they should make. Dr. Scott and Dr. O'Donnell believe this will lead to the selection, synthesis and development of innovative and inexpensive drugs to treat these neglected diseases.

In the second step, D3 uses an innovative, distributed educational approach to synthesize the candidate molecules. Undergraduate and graduate chemistry students from around the world synthesize subsets of these candidate molecules as part of their normal training in synthetic chemistry. Currently students at IUPUI, the University of Indianapolis, and universities in Poland, Russia and Spain have demonstrated their ability to make the molecules (or portions of the molecules) that can be identified by the personal computers as potential candidates for drug discovery.

Initial results are very promising, according to Dr. Scott. "While learning chemistry synthesis skills students across the globe synthesize new molecules to be tested as drug leads. The molecules meet the same quality standards as those required in industry. At the same time the students enthusiastically participate in the synthesis laboratories. They enjoy seeing how their work will advance science that is going to make a difference to individuals suffering from diseases which have been ignored," he said.

The third step in D3 is biological testing of the molecules synthesized by the students. Dr. Scott and Dr. O'Donnell hope the success of distributed problem solving at the computational and synthetic stages of drug discovery will encourage their biological colleagues to develop simple, inexpensive tests to enable students worldwide to participate in this final stage of drug-lead discovery. Currently some of the molecules made are being evaluated through the resources of the National Institutes of Health. In the future, promising drugs will then go on to pre-clinical trials.

"The coordinated and recombined results of these distributed D3 resources can economically accelerate the identification of leads in the early stages of the drug discovery process. Simultaneously, this effort provides educational and job opportunities in both the developed and developing worlds, while building cultural and economic bridges for the common good," Dr. Scott and Dr. O'Donnell wrote in an accompanying perspective article.

The studies on D3 published in the Journal of Combinatorial Chemistry were funded by the National Institutes of Health, National Science Foundation, Camille and Henry Dreyfus Foundation, and Lilly Research Laboratories.

Dr. Scott and Dr. O'Donnell continue to enlist chemistry departments in the United States and other parts of the globe in this program to help children and adults with devastating diseases which have been largely ignored by the developed world.

Cindy Fox Aisen | EurekAlert!
Further information:
http://www.iupui.edu

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>