Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

IUPUI chemists develop Distributed Drug Discovery: Finding drugs for neglected diseases

17.06.2009
Researchers from Indiana University-Purdue University Indianapolis (IUPUI) have developed Distributed Drug Discovery (D3), a new low-cost strategy to accelerate the discovery of drugs to treat neglected diseases such as tuberculosis, leprosy, leshmaniasis, dengue fever, and Chagas disease.

Even in times of economic prosperity, the pharmaceutical industry has often been reluctant to get involved in developing treatments for diseases that occur primarily in low income countries. The low cost D3 approach, involving distributed global educational resources at the early stage of discovery, is even more attractive in this time of global economic downturn.

A distributed problem solving process breaks large problems into small pieces which are "distributed" to multiple, small, low-cost sites to obtain a solution. For decades astronomers have enlisted the help of the public, asking individuals around the world to leave their home computers on overnight. While normally idle, each one of these computers looks for patterns in a small subset of the incredibly large amount of space noise signals received by arrays of radio telescopes scanning the skies.

Two studies, published this year in the Journal of Combinatorial Chemistry, detail the first two steps in D3, developed by William Scott, Ph.D., research professor, and Martin J. O'Donnell, Ph.D., IUPUI Chancellor's Professor, both of the Department of Chemistry and Chemical Biology at IUPUI.

D3 uses a distributed problem approach at all three key stages of drug discovery. Step one is identifying candidate drug molecules. To do this, IUPUI researchers are soliciting the global advice of computational experts in neglected disease areas and utilizing the computational power of multiple personal computers around the world to scan the almost infinite number of molecules which the D3 synthesis process could make to identify the smaller number of drug candidate molecules they should make. Dr. Scott and Dr. O'Donnell believe this will lead to the selection, synthesis and development of innovative and inexpensive drugs to treat these neglected diseases.

In the second step, D3 uses an innovative, distributed educational approach to synthesize the candidate molecules. Undergraduate and graduate chemistry students from around the world synthesize subsets of these candidate molecules as part of their normal training in synthetic chemistry. Currently students at IUPUI, the University of Indianapolis, and universities in Poland, Russia and Spain have demonstrated their ability to make the molecules (or portions of the molecules) that can be identified by the personal computers as potential candidates for drug discovery.

Initial results are very promising, according to Dr. Scott. "While learning chemistry synthesis skills students across the globe synthesize new molecules to be tested as drug leads. The molecules meet the same quality standards as those required in industry. At the same time the students enthusiastically participate in the synthesis laboratories. They enjoy seeing how their work will advance science that is going to make a difference to individuals suffering from diseases which have been ignored," he said.

The third step in D3 is biological testing of the molecules synthesized by the students. Dr. Scott and Dr. O'Donnell hope the success of distributed problem solving at the computational and synthetic stages of drug discovery will encourage their biological colleagues to develop simple, inexpensive tests to enable students worldwide to participate in this final stage of drug-lead discovery. Currently some of the molecules made are being evaluated through the resources of the National Institutes of Health. In the future, promising drugs will then go on to pre-clinical trials.

"The coordinated and recombined results of these distributed D3 resources can economically accelerate the identification of leads in the early stages of the drug discovery process. Simultaneously, this effort provides educational and job opportunities in both the developed and developing worlds, while building cultural and economic bridges for the common good," Dr. Scott and Dr. O'Donnell wrote in an accompanying perspective article.

The studies on D3 published in the Journal of Combinatorial Chemistry were funded by the National Institutes of Health, National Science Foundation, Camille and Henry Dreyfus Foundation, and Lilly Research Laboratories.

Dr. Scott and Dr. O'Donnell continue to enlist chemistry departments in the United States and other parts of the globe in this program to help children and adults with devastating diseases which have been largely ignored by the developed world.

Cindy Fox Aisen | EurekAlert!
Further information:
http://www.iupui.edu

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>