Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


IU researchers target vascular disease linked to cancer-causing gene mutation

Researchers have discovered how a genetic disease known mainly for its life-threatening tumors also can cause sudden death from cardiovascular disease in children, and are mounting a clinical trial to develop treatments for the problem.

Scientists from the Indiana University School of Medicine found that the mutation that causes neurofibromatosis type 1 disease leads to arterial inflammation and damage that is similar to the long-term damage that can occur as people age. They reported their findings in the March issue of the Journal of Clinical Investigation.

Neurofibromatosis results from mutations in a gene called NF1, which causes tumors to form in the cells that make up the protective sheaths around nerves. In humans, NF1 mutations resulting in neurofibromatosis occur in one in 3,500 births, making it the most common genetic disease in humans that results in a predisposition to cancer.

However, cardiovascular disease in children with neurofibromatosis is a significant but under-recognized problem for which the patients are rarely tested, said David Ingram, M.D., associate professor of pediatrics and of biochemistry and molecular biology and principal investigator of the research team. Moreover, he said, "It's often a silent killer with no symptoms or warnings in advance of a catastrophic event – the children present with a heart attack or stroke."

A 2001 analysis of death certificates by Jan Friedman, M.D., Ph.D, of the University of British Columbia in Vancouver, found that the median age of death of NF1 patients was 15 years younger than the general population. NF1 patients who died at age 30 or younger were more than seven times as likely as normal patients to have been diagnosed with a cardiovascular problem.

Using genetic experiments in mice Dr. Ingram and his team were able to narrow the cause of the cardiovascular problems down to the inflammatory cells delivered to the site of the damaged blood vessel, ruling out potential effects from NF1 gene mutations in the blood vessel muscle cells and the cells that line the inside of the blood vessels.

In addition, they compared blood samples from a small group of human patients with and without the NF1 mutation and found that the neurofibromatosis patients had significant levels of inflammatory cells and other compounds that pose a higher risk of cardiovascular disease.

The IU researchers, in collaboration with Dr. Friedman in Vancouver, have begun a pilot clinical trial to evaluate potential diagnostic tests, including blood pressure monitoring and ultrasound tests of carotid arteries, that might enable physicians to discover and treat neurofibromatosis patients who are developing cardiovascular problems.

"We think that if we can demonstrate this association with vascular effects and the ability to diagnose them we could proceed to an intervention clinical trial. Statins have anti-inflammatory effects and there are other agents that could potentially be used," Dr. Ingram said.

The clinical trial protocols used in this research were developed with the assistance of the Indiana Clinical and Translational Sciences Institute. Funding for the research was provided by grants from the National Institutes of Health and the Department of Defense.

Dr. Ingram is a member of the Wells Center for Pediatric Research, the Indiana Center for Vascular Biology and Medicine, and the Indiana University Melvin and Bren Simon Cancer Center.

The IU School of Medicine is on the Indiana University-Purdue University Indianapolis campus.

Eric Schoch | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>