Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ISU researchers discover cause of immune system avoidance of certain pathogens

18.08.2010
A special set of sugars found on some disease-causing pathogens helps those pathogens fight the body's natural defenses as well as vaccines, say two Iowa State University researchers.

This discovery may be a first step in understanding a disease family that includes tuberculosis for which there are currently no good vaccines or cures.

Nicola Pohl, professor of chemistry, and Christine Petersen, assistant professor of veterinary pathology, discovered that a natural coating of sugar interacts with the body's defense cells to dampen its own immune response.

The findings are published in the current online issue of the Journal of the American Chemical Society.

Pohl and Petersen began studying persistent pathogens such as tuberculosis and the parasite Leishmania five years ago when they noticed that some types of the parasite can make people sick, while others do not.

"One of the things I was curious about was that pathogenic strains of Leishmania have a different sugar coating on them than nonpathogenic strains," Pohl said.

"We asked the question 'Is it possible that just the sugar coating is enough to make something pathogenic or nonpathogenic?'" she said.

Leishmania-associated diseases are not usually found in the United States, but have been observed in soldiers returning from the Middle East. The diseases can cause unsightly sores, and can last a period of months, according to Pohl.

The diseases are often fatal to dogs in the United States.

"The problem is, in places like Bangladesh, where people are in a nutritionally compromised state, peoples' immune systems aren't strong enough, and the disease can be fatal," said Pohl.

Normally, when a disease-causing agent enters the body, cells called macrophages engulf and start to destroy the agent.

Leishmania-type diseases are resistant to this process.

To test the theory on the resistance effect of the sugar coating, Pohl and Petersen developed an experiment that required creating small beads measuring one micron in diameter to mimic the pathogens.

One group of beads was then coated with a type of sugar that is similar to that of Leishmania. Another set of beads was coated with a lactose-type sugar that isn't harmful to the cell. A third had no coating.

The beads were then introduced into macrophages.

When the uncoated beads were introduced into the macrophages, the cells noticed the beads and started an immune response, as they should.

When the lactose-covered beads were introduced, they were also recognized and removed.

When the Leishmania-sugar covered beads were introduced, the macrophages took a much longer time to recognize their presence. Then, the immune defense system slowed down or dampened the attacks.

This dampening, Petersen and Pohl showed, is due to an interaction between the sugar on the bead and Toll-like receptor2 (TLR2) within the macrophage.

"There is something inherent about the sugars themselves, and the difference in these sugars, that dampens your normal response to the pathogen," said Pohl.

Pohl said they don't yet know exactly what that interaction is or how it works, but she hopes that this research may lead to more research eventually beating the disease.

"Right now we don't have good therapeutics against Leishmaniasis, and we don't have a vaccine for it, so basically you can't do anything about it," she added.

"The more information we have about this, the more we learn about how to circumvent this to get an effective vaccine," she said.

Petersen credits the partnership with Pohl as one of the key factors in understanding the problem.

Pohl's chemistry background doesn't often lead her to look at whole organisms and Petersen, as a veterinary pathologist, previously didn't look at the chemistry.

"Many of these critical sub-molecular interactions are often glossed over by immunologists and biologists," said Petersen. "But the work Nikki and I just published shows that they can make a much larger difference in how a pathogen is sensed by the immune system."

The research staff also included Alex Osanya, an assistant scientist in veterinary pathology and Eun-Ho Song, a former graduate student in chemistry.

Nicola Pohl | EurekAlert!
Further information:
http://www.iastate.edu

Further reports about: ISU Leishmania United immune response immune system

More articles from Life Sciences:

nachricht Rutgers scientists discover 'Legos of life'
23.01.2018 | Rutgers University

nachricht Researchers identify a protein that keeps metastatic breast cancer cells dormant
23.01.2018 | Institute for Research in Biomedicine (IRB Barcelona)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Rutgers scientists discover 'Legos of life'

23.01.2018 | Life Sciences

Seabed mining could destroy ecosystems

23.01.2018 | Earth Sciences

Transportable laser

23.01.2018 | Physics and Astronomy

VideoLinks Science & Research
Overview of more VideoLinks >>>