Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ISU researchers discover cause of immune system avoidance of certain pathogens

18.08.2010
A special set of sugars found on some disease-causing pathogens helps those pathogens fight the body's natural defenses as well as vaccines, say two Iowa State University researchers.

This discovery may be a first step in understanding a disease family that includes tuberculosis for which there are currently no good vaccines or cures.

Nicola Pohl, professor of chemistry, and Christine Petersen, assistant professor of veterinary pathology, discovered that a natural coating of sugar interacts with the body's defense cells to dampen its own immune response.

The findings are published in the current online issue of the Journal of the American Chemical Society.

Pohl and Petersen began studying persistent pathogens such as tuberculosis and the parasite Leishmania five years ago when they noticed that some types of the parasite can make people sick, while others do not.

"One of the things I was curious about was that pathogenic strains of Leishmania have a different sugar coating on them than nonpathogenic strains," Pohl said.

"We asked the question 'Is it possible that just the sugar coating is enough to make something pathogenic or nonpathogenic?'" she said.

Leishmania-associated diseases are not usually found in the United States, but have been observed in soldiers returning from the Middle East. The diseases can cause unsightly sores, and can last a period of months, according to Pohl.

The diseases are often fatal to dogs in the United States.

"The problem is, in places like Bangladesh, where people are in a nutritionally compromised state, peoples' immune systems aren't strong enough, and the disease can be fatal," said Pohl.

Normally, when a disease-causing agent enters the body, cells called macrophages engulf and start to destroy the agent.

Leishmania-type diseases are resistant to this process.

To test the theory on the resistance effect of the sugar coating, Pohl and Petersen developed an experiment that required creating small beads measuring one micron in diameter to mimic the pathogens.

One group of beads was then coated with a type of sugar that is similar to that of Leishmania. Another set of beads was coated with a lactose-type sugar that isn't harmful to the cell. A third had no coating.

The beads were then introduced into macrophages.

When the uncoated beads were introduced into the macrophages, the cells noticed the beads and started an immune response, as they should.

When the lactose-covered beads were introduced, they were also recognized and removed.

When the Leishmania-sugar covered beads were introduced, the macrophages took a much longer time to recognize their presence. Then, the immune defense system slowed down or dampened the attacks.

This dampening, Petersen and Pohl showed, is due to an interaction between the sugar on the bead and Toll-like receptor2 (TLR2) within the macrophage.

"There is something inherent about the sugars themselves, and the difference in these sugars, that dampens your normal response to the pathogen," said Pohl.

Pohl said they don't yet know exactly what that interaction is or how it works, but she hopes that this research may lead to more research eventually beating the disease.

"Right now we don't have good therapeutics against Leishmaniasis, and we don't have a vaccine for it, so basically you can't do anything about it," she added.

"The more information we have about this, the more we learn about how to circumvent this to get an effective vaccine," she said.

Petersen credits the partnership with Pohl as one of the key factors in understanding the problem.

Pohl's chemistry background doesn't often lead her to look at whole organisms and Petersen, as a veterinary pathologist, previously didn't look at the chemistry.

"Many of these critical sub-molecular interactions are often glossed over by immunologists and biologists," said Petersen. "But the work Nikki and I just published shows that they can make a much larger difference in how a pathogen is sensed by the immune system."

The research staff also included Alex Osanya, an assistant scientist in veterinary pathology and Eun-Ho Song, a former graduate student in chemistry.

Nicola Pohl | EurekAlert!
Further information:
http://www.iastate.edu

Further reports about: ISU Leishmania United immune response immune system

More articles from Life Sciences:

nachricht What the world's tiniest 'monster truck' reveals
23.08.2017 | American Chemical Society

nachricht Treating arthritis with algae
23.08.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

ShAPEing the future of magnesium car parts

23.08.2017 | Automotive Engineering

New insights into the world of trypanosomes

23.08.2017 | Life Sciences

New Test for Rare Immunodeficiency

23.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>