Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ISU researcher, collaborators, re-sequence six corn varieties, find some genes missing

24.11.2010
Most living plant and animal species have a certain, relatively small, amount of variation in their genetic make-up.

Differences in height, skin and eye color of humans, for example, are very noticeable, but are actually the consequences of very small variations in genetic makeup.

Researchers at Iowa State University, China Agricultural University and the Beijing Genomics Institute in China recently re-sequenced and compared six elite inbred corn (maize) lines, including the parents of the most productive commercial hybrids in China.

When comparing the different inbred corn lines, researchers expected to see more variations in the genes than in humans.

Surprisingly, researchers found entire genes that were missing from one line to another.

"That was a real eye opener," said Patrick Schnable, director of the Center for Plant Genomics and professor of agronomy at ISU.

The research uncovered more than 100 genes that are present in some corn lines but missing in others.

This variation is called the presence/absence variation, and Schnable thinks it could be very important.

Schnable's research is the cover article for the current edition of the journal Nature Genetics, and has been highlighted by the association Faculty 1000, which identifies the top 2 percent of important research from peer-reviewed journals worldwide.

"One of the goals of the research is to try to identify how heterosis (hybrid vigor) works," said Schnable.

Heterosis is the phenomenon in which the offspring of two different lines of corn grow better than either of the two parents. This is the attribute that has enabled corn breeders to produce better and better hybrids of corn.

For instance, two lines of corn can be bred to produce a hybrid that increases yield or resists drought or pests better than either of the parents.

With the current discovery that certain genes are missing from inbred corn lines, Schnable thinks science is a step closer to identifying which genes are responsible for which traits.

Knowing which genes are important would provide a shortcut for breeders to produce hybrids with specific traits.

For example, if one inbred line is missing a gene and is drought susceptible, crossing that line with a line that includes the missing gene and is drought tolerant, might lead to a better hybrid, according to Schnable.

"If we can understand how heterosis works, we might be able to make predictions about which inbreds to cross together," said Schnable. "I don't think we'll be able to tell plant breeders which hybrids will be the absolute winners. But we might be able to say 'These combinations are probably not worth testing.'"

Schnable sees combining genes from two lines as a chance to introduce the best from both plants.

"These are complementing somehow," he said. "It's like a really good marriage. She's good at this, and he's good at that, and together, they form a good team."

The potential for improvement is great, but Schnable cautions that much work needs to be done.

"We are at the point where we think this is going to be important, but we don't know which genes specifically are going to be important," he said. "Now we need to figure out which genetic combinations will be predictive of hybrid success."

Patrick Schnable | EurekAlert!
Further information:
http://www.iastate.edu

Further reports about: Genomics HYBRID ISU Schnable eye color of humans genetic make-up inbred corn lines

More articles from Life Sciences:

nachricht Plant escape from waterlogging
17.10.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Study suggests oysters offer hot spot for reducing nutrient pollution
17.10.2017 | Virginia Institute of Marine Science

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Study suggests oysters offer hot spot for reducing nutrient pollution

17.10.2017 | Life Sciences

Breaking: the first light from two neutron stars merging

17.10.2017 | Physics and Astronomy

World first for reading digitally encoded synthetic molecules

17.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>