Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ISU researcher, collaborators, re-sequence six corn varieties, find some genes missing

24.11.2010
Most living plant and animal species have a certain, relatively small, amount of variation in their genetic make-up.

Differences in height, skin and eye color of humans, for example, are very noticeable, but are actually the consequences of very small variations in genetic makeup.

Researchers at Iowa State University, China Agricultural University and the Beijing Genomics Institute in China recently re-sequenced and compared six elite inbred corn (maize) lines, including the parents of the most productive commercial hybrids in China.

When comparing the different inbred corn lines, researchers expected to see more variations in the genes than in humans.

Surprisingly, researchers found entire genes that were missing from one line to another.

"That was a real eye opener," said Patrick Schnable, director of the Center for Plant Genomics and professor of agronomy at ISU.

The research uncovered more than 100 genes that are present in some corn lines but missing in others.

This variation is called the presence/absence variation, and Schnable thinks it could be very important.

Schnable's research is the cover article for the current edition of the journal Nature Genetics, and has been highlighted by the association Faculty 1000, which identifies the top 2 percent of important research from peer-reviewed journals worldwide.

"One of the goals of the research is to try to identify how heterosis (hybrid vigor) works," said Schnable.

Heterosis is the phenomenon in which the offspring of two different lines of corn grow better than either of the two parents. This is the attribute that has enabled corn breeders to produce better and better hybrids of corn.

For instance, two lines of corn can be bred to produce a hybrid that increases yield or resists drought or pests better than either of the parents.

With the current discovery that certain genes are missing from inbred corn lines, Schnable thinks science is a step closer to identifying which genes are responsible for which traits.

Knowing which genes are important would provide a shortcut for breeders to produce hybrids with specific traits.

For example, if one inbred line is missing a gene and is drought susceptible, crossing that line with a line that includes the missing gene and is drought tolerant, might lead to a better hybrid, according to Schnable.

"If we can understand how heterosis works, we might be able to make predictions about which inbreds to cross together," said Schnable. "I don't think we'll be able to tell plant breeders which hybrids will be the absolute winners. But we might be able to say 'These combinations are probably not worth testing.'"

Schnable sees combining genes from two lines as a chance to introduce the best from both plants.

"These are complementing somehow," he said. "It's like a really good marriage. She's good at this, and he's good at that, and together, they form a good team."

The potential for improvement is great, but Schnable cautions that much work needs to be done.

"We are at the point where we think this is going to be important, but we don't know which genes specifically are going to be important," he said. "Now we need to figure out which genetic combinations will be predictive of hybrid success."

Patrick Schnable | EurekAlert!
Further information:
http://www.iastate.edu

Further reports about: Genomics HYBRID ISU Schnable eye color of humans genetic make-up inbred corn lines

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>