Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ISU multi-center study finds little effect of soy isoflavones on bone loss in postmenopausal women

10.02.2010
A previous six-month study by Iowa State University researchers had indicated that consuming modest amounts of soy protein, rich in isoflavones, lessened lumbar spine bone loss in midlife, perimenopausal women.

But now an expanded three-year study by some of those same researchers does not show a bone-sparing effect in postmenopausal women who ingested soy isoflavone tablets, except for a modest effect at the femoral (hip) neck among those who took the highest dosage.

The multi-center clinical trial of 224 postmenopausal women -- led by D. Lee Alekel, professor of nutrition and interim associate director of the Nutrition and Wellness Research Center (NWRC) at Iowa State, and supported by the National Institute of Arthritis, Musculoskeletal and Skin Diseases, one of the research institutes of the National Institutes of Health (NIH) -- was the longest ever conducted on the effects of soy isoflavones on bone mineral density (BMD). It compared the effects of either ingesting daily 80-mg daily or 120-mg soy isoflavone tablets, compared to placebo tablets on BMD and other health outcomes.

Iowa State NWRC researchers collaborated with research physiologist Marta D. Van Loan and her colleagues at the USDA Agricultural Research Service's Western Human Nutrition Research Center, located at the University of California, Davis. The primary results of their study were published in the January issue of The American Journal of Clinical Nutrition.

New study expands upon earlier research
"Our six-month preliminary study, published in 2000, indicated that soy protein, rich in isoflavones, exerted the greatest impact in slowing the loss of bone mineral density in the lumbar spine," Alekel said. "But we believed that we needed to replicate these results in a study with a greater sample size and longer duration, which is what we did with this three-year intervention.

"In this longer study, we had sufficient power to detect change," she continued. "We monitored adverse events, had excellent compliance throughout, and accounted for potential confounding factors."

NWRC research staff members Laura Hanson, Jeanne Stewart and Kathy Hanson also joined Kenneth Koehler and C. Ted Peterson from statistics as part of the eight-member ISU team that conducted the research.

The researchers ran statistical analyses to determine change in BMD at the lumbar spine, total proximal femur (hip), femoral neck and whole body. They accounted for treatment, age, whole body fat mass and bone removal (using a biochemical marker).

While the 120-mg dose soy isoflavones did reveal a small protective effect on femoral neck bone BMD, researchers found no significant effect of treatment on lumbar spine, total hip, or whole-body BMD.

"This trial used isoflavones extracted from soy protein, compressed into tablet form, consumed over the course of three years, which is very different than either providing soy protein or soy foods," Alekel said. "In our recent study, we did not demonstrate an important biological effect on BMD or bone turnover."

Research questions bone loss value of soy isoflavones
The new study calls into question the value of postmenopausal women consuming soy isoflavone tablets to help lessen bone loss and minimize the effect of osteoporosis.

"The preponderance of studies that have been published -- particularly the longer term, more carefully conducted studies, like our own -- have shown little to no biological effects of soy isoflavones on BMD," she said. "This field of research has attracted 'believers,' making it difficult to convince them otherwise. They may continue to believe what they want to believe, rather than what the evidence shows."

And when it comes to minimizing the consequences of osteoporosis in postmenopausal women, Alekel urges a more holistic approach.

"People, in general, would like an easy fix. We would all like soy isoflavones to be that magic pill, but this study has found that they are not," she said.

Results from other health outcomes from this research have been published in six manuscripts to date, with six additional manuscripts underway. The NWRC research team will continue to study factors that influence bone mineral density and health outcomes in postmenopausal women.

Mike Ferlazzo | EurekAlert!
Further information:
http://www.iastate.edu

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>