Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Iowa State University scientists genetically increase algae biomass by more than 50 percent

22.11.2011
Research at Iowa State University has led to discovery of a genetic method that can increase biomass in algae by 50 to 80 percent.

The breakthrough comes from expressing certain genes in algae that increase the amount of photosynthesis in the plant, which leads to more biomass.

Expressing genes means that the gene's function is turned on.

"The key to this (increase in biomass) is combination of two genes that increases the photosynthetic carbon conversion into organic matter by 50 percent over the wild type under carbon dioxide enrichment conditions," said Martin Spalding, professor in the Department of Genetics, Development, and Cell Biology and associate dean for research and graduate studies in the College of Liberal Arts and Sciences.

Carbon enrichment conditions are those in which the algae has enough carbon dioxide.

This patent-pending technology is available for licensing from the Iowa State University Research Foundation, which also provided technology development funds.

This opens up possibilities for more and better biofuel development, according to Spalding.

"There is no doubt in my mind that this brings us closer [to affordable, domestic biofuel]," said Spalding.

In nature, algae are limited from growing faster because they don't get enough carbon dioxide from the atmosphere, according to Spalding.

In environments that have relatively low levels of carbon dioxide (CO2), such as air in earth's atmosphere, two genes in algae, LCIA and LCIB, are expressed - or turned on - to help capture and then channel more carbon dioxide from the air into the cells to keep the algae alive and growing.

However, when algae are in environments with high carbon dioxide levels, such as in soil near plant roots that are expiring carbon dioxide, the two relevant genes shut down because the plant is getting enough carbon dioxide.

The process is similar to a car driving up a hill. The accelerator - these two genes - is pressed and the engine works hard to climb a hill. But when going down an incline, the driver often lets up on the accelerator since more gas isn't needed - the genes shut down.

The two genes are expressed - essentially keeping algae's foot on the gas - even when they are in a carbon dioxide-rich environment and don't need additional carbon dioxide.

Research by Spalding's group shows that algae can be made to produce biomass with the accelerator floored, even in conditions where it would normally just coast, Spalding said.

"Based on some prior research we had done, we expected to see an increase, probably in the 10 to 20 percent range" he said. "But we were surprised to see this big of an increase."

In experiments to get the algae type (Chlamydomonas reinhardtii) to produce more biomass, Spalding first expressed LCIA and LCIB separately. Each effort granted a significant 10 to 15 percent increase in biomass.

When the two genes were expressed together, Spalding was surprised to see the 50 to 80 percent biomass increase.

"Somehow these two genes are working together to increase the amount of carbon dioxide that's converted through photosynthesis into biomass by the algae under conditions where you would expect there would already be enough carbon dioxide," said Spalding.

The excess biomass naturally becomes starch through the photosynthesis process, and increases the biomass starch by around 80 percent.

By using some existing mutated genes, Spalding can instruct the algae to make oil instead of starch. This process requires more energy and the process results in around a 50 percent increase in oil biomass.

Spalding's research was funded in part by grants from the Department of Agriculture's National Institute of Food and Agriculture and the Department of Energy, Advanced Research Projects Agency - Energy.

Martin Spalding | EurekAlert!
Further information:
http://www.iastate.edu

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>