Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Iowa State researchers produce cheap sugars for sustainable biofuel production

30.09.2011
Iowa State University's Robert C. Brown keeps a small vial of brown, sweet-smelling liquid on his office table.

"It looks like something you could pour on your pancakes," he said. "In many respects, it is similar to molasses."

Brown, in fact, calls it "pyrolytic molasses."

That's because it was produced by the fast pyrolysis of biomass such as corn stalks or wood chips. Fast pyrolysis involves quickly heating the biomass without oxygen to produce liquid or gas products.

"We think this is a new way to make inexpensive sugars from biomass," said Brown, an Anson Marston Distinguished Professor in Engineering, the Gary and Donna Hoover Chair in Mechanical Engineering and the Iowa Farm Bureau Director of Iowa State's Bioeconomy Institute.

That's a big deal because those sugars can be further processed into biofuels. Brown and other Iowa State researchers believe pyrolysis of lignocelluslosic biomass has the potential to be the cheapest way to produce biofuels or biorenewable chemicals.

Brown and Iowa State researchers will present their ideas and findings during tcbiomass2011, the International Conference on Thermochemical Conversion Science in Chicago Sept. 28-30. On Thursday, Sept, 29, Brown will address the conference with a plenary talk describing how large amounts of sugars can be produced from biomass by a simple pretreatment before pyrolysis. He'll also explain how these sugars can be economically recovered from the products of pyrolysis.

A poster session following Brown's talk will highlight thermochemical technologies developed by 19 Iowa State research teams, including processes that:

increase the yield of sugar from fast pyrolysis of biomass with a pretreatment that neutralizes naturally occurring alkali that otherwise interferes with the release of sugars

prevent burning of sugar released during pyrolysis by rapidly transporting it out of the hot reaction zone

recover sugar from the heavy end of bio-oil that has been separated into various fractions

separate sugars from the heavy fractions of bio-oil using a simple water-washing process.

In addition to Brown, key contributors to the pyrolysis research at Iowa State include Brent Shanks, the Mike and Jean Steffenson Professor of Chemical and Biological Engineering and director of the National Science Foundation Engineering Research Center for Biorenewable Chemicals based at Iowa State; Christopher Williams, professor of civil, construction and environmental engineering; Zhiyou Wen, associate professor of food science and human nutrition; Laura Jarboe, assistant professor of chemical and biological engineering; Xianglan Bai, adjunct assistant professor of aerospace engineering; Marjorie Rover and Sunitha Sadula, research scientists at the Center for Sustainable Environmental Technologies; Dustin Dalluge, a graduate student in mechanical engineering; and Najeeb Kuzhiyil, a former doctoral student who is now working for GE Transportation in Erie, Penn.

Their work has been supported by the eight-year, $22.5 million ConocoPhillips Biofuels Program at Iowa State. The program was launched in April 2007.

Brown said Iowa State will – literally – take a bus load of students and researchers to the Chicago conference to present their work on thermochemical technologies, including production of sugars from biomass.

"The Department of Energy has been working for 35 years to get sugar out of biomass," Brown said. "Most of the focus has been on use of enzymes, which remains extremely expensive. What we've developed is a simpler method based on the heating of biomass."

Robert C. Brown | EurekAlert!
Further information:
http://www.iastate.edu

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>