Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Iowa State researchers produce cheap sugars for sustainable biofuel production

30.09.2011
Iowa State University's Robert C. Brown keeps a small vial of brown, sweet-smelling liquid on his office table.

"It looks like something you could pour on your pancakes," he said. "In many respects, it is similar to molasses."

Brown, in fact, calls it "pyrolytic molasses."

That's because it was produced by the fast pyrolysis of biomass such as corn stalks or wood chips. Fast pyrolysis involves quickly heating the biomass without oxygen to produce liquid or gas products.

"We think this is a new way to make inexpensive sugars from biomass," said Brown, an Anson Marston Distinguished Professor in Engineering, the Gary and Donna Hoover Chair in Mechanical Engineering and the Iowa Farm Bureau Director of Iowa State's Bioeconomy Institute.

That's a big deal because those sugars can be further processed into biofuels. Brown and other Iowa State researchers believe pyrolysis of lignocelluslosic biomass has the potential to be the cheapest way to produce biofuels or biorenewable chemicals.

Brown and Iowa State researchers will present their ideas and findings during tcbiomass2011, the International Conference on Thermochemical Conversion Science in Chicago Sept. 28-30. On Thursday, Sept, 29, Brown will address the conference with a plenary talk describing how large amounts of sugars can be produced from biomass by a simple pretreatment before pyrolysis. He'll also explain how these sugars can be economically recovered from the products of pyrolysis.

A poster session following Brown's talk will highlight thermochemical technologies developed by 19 Iowa State research teams, including processes that:

increase the yield of sugar from fast pyrolysis of biomass with a pretreatment that neutralizes naturally occurring alkali that otherwise interferes with the release of sugars

prevent burning of sugar released during pyrolysis by rapidly transporting it out of the hot reaction zone

recover sugar from the heavy end of bio-oil that has been separated into various fractions

separate sugars from the heavy fractions of bio-oil using a simple water-washing process.

In addition to Brown, key contributors to the pyrolysis research at Iowa State include Brent Shanks, the Mike and Jean Steffenson Professor of Chemical and Biological Engineering and director of the National Science Foundation Engineering Research Center for Biorenewable Chemicals based at Iowa State; Christopher Williams, professor of civil, construction and environmental engineering; Zhiyou Wen, associate professor of food science and human nutrition; Laura Jarboe, assistant professor of chemical and biological engineering; Xianglan Bai, adjunct assistant professor of aerospace engineering; Marjorie Rover and Sunitha Sadula, research scientists at the Center for Sustainable Environmental Technologies; Dustin Dalluge, a graduate student in mechanical engineering; and Najeeb Kuzhiyil, a former doctoral student who is now working for GE Transportation in Erie, Penn.

Their work has been supported by the eight-year, $22.5 million ConocoPhillips Biofuels Program at Iowa State. The program was launched in April 2007.

Brown said Iowa State will – literally – take a bus load of students and researchers to the Chicago conference to present their work on thermochemical technologies, including production of sugars from biomass.

"The Department of Energy has been working for 35 years to get sugar out of biomass," Brown said. "Most of the focus has been on use of enzymes, which remains extremely expensive. What we've developed is a simpler method based on the heating of biomass."

Robert C. Brown | EurekAlert!
Further information:
http://www.iastate.edu

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>