Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Inviting arthritic trouble

12.07.2010
A large-scale genetic screen reveals a factor that makes rheumatoid arthritis patients’ joints vulnerable to immune attack

Under normal conditions, the body is protected against immune system-mediated self-destruction by marker proteins that indicate that host cells are ‘off limits’ and should be ignored. In patients with rheumatoid arthritis (RA), however, such safeguards fail to prevent immune cells from damaging joint tissues.

Although an estimated 1% of the world’s population is affected by RA, the roots of this disorder are poorly understood. Now, a multi-institutional team of Japanese researchers led by Yuta Kochi and Kazuhiko Yamamoto of the RIKEN Center for Genomic Medicine in Yokohama has characterized potential genetic risk factors1.

The researchers performed a large-scale ‘genome-wide association study’, screening thousands of Japanese individuals to identify small genomic sequence variations—so-called ‘single-nucleotide polymorphisms’ (SNPs)—that are linked with RA susceptibility to a statistically meaningful degree. The strongest association they identified was for a SNP in the vicinity of the gene encoding chemokine (C-C motif) receptor 6 (CCR6). Subsequent analysis of two large, independent cohorts of Japanese subjects provided further confirmation of the connection between this CCR6 SNP and RA.

The CCR6 receptor recognizes signals that stimulate immune cell development, and triggers immune system effects that could be directly relevant to RA. “This receptor has been shown to be important for the migration and recruitment of immune cells such as dendritic cells, T cells, and B-cells during inflammatory and immunological responses” says Kochi, “and it may also regulate the differentiation and maturation of these cells.” Closer examination by the researchers subsequently revealed a second potentially important genetic variation affecting CCR6 expression. They also determined that the elevated CCR6 activity resulting from this variation was strongly associated with RA.

CCR6 appears to exert its pathological effects by promoting the inflammatory response triggered by a recently identified class of helper T cells known as Th17 cells. “We believe the primary role of CCR6 in RA pathogenesis is facilitating the entry of Th17 cells into the joints,” says Kochi. “And as CCR6 is also involved in the migration and differentiation of B-cells, it could also influence the activity of auto-reactive B-cells.” Strikingly, these CCR6 variants also appear to contribute to two other inflammatory conditions, Graves’ disease and Crohn’s disease.

Following on from this discovery, Kochi and Yamamoto are hopeful that their data will yield additional candidate genes that enable further insights into how RA patients’ immune systems end up going off-course. “Many other genetic factors other than CCR6 remain to be discovered,” says Kochi.

The corresponding author for this highlight is based at the Laboratory for Autoimmune Diseases, RIKEN Center for Genomic Medicine

Journal information

1. Kochi, Y., Okada, Y., Suzuki, A., Ikari, K., Terao, C., Takahashi, A., Yamazaki, K., Hosono, N., Myouzen, K., Tsunoda, T. et al. A regulatory variant in CCR6 is associated with rheumatoid arthritis susceptibility. Nature Genetics 42, 515–519 (2010)

gro-pr | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6330
http://www.researchsea.com

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>