Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Invisibility Cloak Needed for Cooperation?

08.09.2010
Unusual lipopolysaccharide enables symbiosis between bacterium and fungus

We and all other organisms must constantly grapple with bacteria. Whether for a necessary symbiosis or an infection, carbohydrate structures on cell surfaces play an important role in the interactions between bacteria and organisms.

A team led by Antonio Molinaro at the University of Naples and Christian Hertweck at the Leibniz Institute for Natural Product Research and Infection Biology in Jena have now discovered an unusual carbohydrate structure without which the symbiosis between a bacterium and a fungus that affects rice plants is not stable. As the researchers report in the journal Angewandte Chemie, the bacterium probably requires this structure as camouflage for protection against the defense mechanisms of the fungus.

In gram-negative bacteria, lipopolysaccharide (LPS) carbohydrate structures are especially important for cell–cell interactions. LPS consists of a complex chain made of various saccharide molecules and a lipid that anchors the structure in the cell membrane. “Previous studies were limited to the role of LPS in the interaction of bacteria with animals or plants,” says Hertweck. “There is thus a sizeable knowledge gap with respect to interaction with other microbes.” The team has now examined a singular symbiosis: The fungus Rhizopus microsporus, which causes rice blight, inhibits root growth in rice plants, causing the plants to die. To achieve this, the fungus needs a partner—the bacterium Burkholderia rhizoxinica. The bacteria produce toxins needed by the fungus to damage the rice plants. The nutrients released by the dead plants are then used by both symbiotic partners.

“Until now the mechanism that allows the bacteria to survive within the fungal cells has remained a mystery,” says Hertweck. Now the team seems to be on the heels of a solution. “We have found an unusual polysaccharide, a chain of several galactose molecules, in the LPS of the bacterium,” says Herweck. “This pattern has not been seen before in this class of bacteria; however similar structures often occur in fungi.” The bacterium possibly mimics these structural elements of its host organism. The researchers infected fungi with mutated bacteria that did not contain these polysaccharides. In this case, the partners are not able establish a stable symbiosis. This becomes evident when the fungi are no longer able to produce spores.

“The special galactose sequence probably acts as a disguise for the bacterium,” opines Hertweck. “It is possible that it is thus not recognized as foreign, which keeps it safe from the defense mechanism of the fungus.”

Author: Christian Hertweck, Leibniz-Institut für Naturstoff-Forschung und Infektionsbiologie, HKI, http://www.hki-jena.de/index.php/0/1/107

Title: An Unusual Galactofuranose Lipopolysaccharide That Ensures the Intracellular Survival of Toxin-Producing Bacteria in Their Fungal Host

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201003301

Christian Hertweck | Angewandte Chemie
Further information:
http://www.hki-jena.de/index.php/0/1/107
http://pressroom.angewandte.org

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>