Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Investigational diabetes drug may have fewer side effects

05.06.2012
Drugs for type 2 diabetes can contribute to weight gain, bone fractures and cardiovascular problems, but in mice, an investigational drug appears to improve insulin sensitivity without those troublesome side effects, researchers at Washington University School of Medicine in St. Louis have shown.

The experimental medicine works through a different pathway, which could provide additional molecular targets for treating insulin resistance and diabetes. The new study appears online in the Journal of Biological Chemistry.

“Current diabetes medications activate a receptor that improves insulin sensitivity, but unfortunately also contributes to side effects that make some people discontinue the medication, contributing to other health problems,” says principal investigator Brian N. Finck, PhD. “So even though these drugs are effective, we’d really like to find new insulin-sensitizing therapies that would avoid activating the same receptor.”

Finck, a research assistant professor of medicine in the Division of Geriatrics and Nutritional Science, worked with colleagues at the University of Michigan and at the drug discovery company Metabolic Solutions Development Co., LLC. The scientists studied one of the company’s investigational drugs, MSD-0602, focusing on its effects in obese mice.

The drug improved blood glucose levels and insulin tolerance in the mice, as did the two diabetes drugs that already are on the market: rosiglitazone (Avandia) and pioglitazone (Actos). All three medications appeared to be about equally effective, but MSD-0602 didn’t bind to and activate a receptor in cells called PPARã. Rather, the investigational drug clings to the mitochondria, part of the cell that produces energy.

“The drug altered the cell’s ability to generate energy,” Finck says. “And it also seems to have an anti-inflammatory role in the cell. We also found that the drug improved insulin sensitivity in many different kinds of cells including muscle, fat and liver cells.”

Next, he and his colleagues will attempt to identify proteins that bind to the mitochondrial membrane. Future therapies then could be developed specifically to bind to those proteins while avoiding activation of the PPARã pathway.

“During the last few years there has been some hesitation in the drug-development business about targeting PPARã based on what we’ve learned about side effects from drugs that regulate that pathway,” Finck says. “So the biologist in me is very interested in identifying other targets for diabetes drugs and understanding their role in regulating metabolism.”

Meanwhile, Metabolic Solutions is testing the investigational drug in patients as part of phase II clinical trials to learn how well it controls their blood glucose.

Chen Z, Vigueira PA, Chambers KT, Hall AM, Mitra MS, Qi N, McDonald WG, Colca JR, Kletzien RF, Finck BN. Insulin resistance and metabolic derangements in obese mice are ameliorated by a novel peroxisome proliferator-activated receptor ã-sparing thiazolidinedione. Journal of Biological Chemistry, published online May 2012; http://www.jbc.org/content/early/2012/05/23/jbc.M112.363960.

McDonald, Colca and Kletzein are employed by Metabolic Solutions Development Co., LLC.

Funding comes from the National Institute of Diabetes and Digestive and Kidney Diseases, and the National Institute on Alcohol Abuse and Alcoholism of the National Institutes of Health (NIH), with additional grants from the Barnes-Jewish Hospital Foundation and the American Liver Foundation. NIH grant numbers R41 DK084596, R42 AA021228, P30 DK52574, P30 DK56341, and T32 DK007296.

Washington University School of Medicine’s 2,100 employed and volunteer faculty physicians also are the medical staff of Barnes-Jewish and St. Louis Children’s hospitals. The School of Medicine is one of the leading medical research, teaching and patient care institutions in the nation, currently ranked sixth in the nation by U.S. News & World Report. Through its affiliations with Barnes-Jewish and St. Louis Children’s hospitals, the School of Medicine is linked to BJC HealthCare.

Jim Dryden | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>