Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Investigating the Development of Mechanosensitivity

25.05.2009
Researchers of the Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch, Germany, have gained crucial insight into how mechanosensitivity arises.

By measuring electrical impulses in the sensory neurons of mice, the neurobiologists and pain researchers Dr. Stefan G. Lechner and Professor Gary Lewin were able to directly elucidate, for the first time, the emergence of mechanosensitivity. At the same time they were able to show that neurons develop their sensitivity to touch and pain during different developmental phases but always coincidentally with the growth of the neuronal pathways. (EMBO Journal, 2009, doi:10.1038/emboj.2009.73).*

The sensory neurons, which are sensitive to touch and pain, are located in the dorsal root ganglia between the intervertebral discs. The neurons receive the stimulus and convert it into electrical signals that are conveyed to the brain.

Signal transduction has been investigated very thoroughly, which has led to the development of drugs that block the transduction of pain signals to the brain. Very little, however, is known about how stimulus sensitivity actually emerges.

Using the patch-clamp technique in isolated cells of mouse embryos, the MDC researchers succeeded in measuring tiny electrical currents in the cell membranes after a mechanosensory stimulus.

"These measurements are extremely difficult," Dr. Lechner explained, "which is why only very few laboratories in the world are specialized in this area."

The researchers in Berlin-Buch were able to show that the sensory neurons in the mouse embryo have already fully developed their mechanosensitivity competence on embryonic day 13. That corresponds to about the end of the sixth month of pregnancy in humans.

For this development the neurons do not require any nerve growth factor, which is why the researchers suspect that this process is driven by a genetic program. In contrast, the competence to sense pain in the sensory neurons can only develop with the aid of nerve growth factor (NGF). It takes place at a later stage in embryonic development and even after birth.

*Developmental waves of mechanosensitivity acquisition in sensory neuron subtypes during embryonic development

Stefan G Lechner, Henning Frenzel1, Rui Wang1 and Gary R Lewin*

Department of Neuroscience, Max Delbrück Center for Molecular Medicine, Berlin-Buch, Germany

*Corresponding author

Barbara Bachtler
Press and Public Affairs
Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch
Robert-Rössle-Straße 10
13125 Berlin, Germany
Phone: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de

Barbara Bachtler | Max-Delbrück-Centrum
Further information:
http://www.mdc-berlin.de/

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>