Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Investigating the Development of Mechanosensitivity

25.05.2009
Researchers of the Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch, Germany, have gained crucial insight into how mechanosensitivity arises.

By measuring electrical impulses in the sensory neurons of mice, the neurobiologists and pain researchers Dr. Stefan G. Lechner and Professor Gary Lewin were able to directly elucidate, for the first time, the emergence of mechanosensitivity. At the same time they were able to show that neurons develop their sensitivity to touch and pain during different developmental phases but always coincidentally with the growth of the neuronal pathways. (EMBO Journal, 2009, doi:10.1038/emboj.2009.73).*

The sensory neurons, which are sensitive to touch and pain, are located in the dorsal root ganglia between the intervertebral discs. The neurons receive the stimulus and convert it into electrical signals that are conveyed to the brain.

Signal transduction has been investigated very thoroughly, which has led to the development of drugs that block the transduction of pain signals to the brain. Very little, however, is known about how stimulus sensitivity actually emerges.

Using the patch-clamp technique in isolated cells of mouse embryos, the MDC researchers succeeded in measuring tiny electrical currents in the cell membranes after a mechanosensory stimulus.

"These measurements are extremely difficult," Dr. Lechner explained, "which is why only very few laboratories in the world are specialized in this area."

The researchers in Berlin-Buch were able to show that the sensory neurons in the mouse embryo have already fully developed their mechanosensitivity competence on embryonic day 13. That corresponds to about the end of the sixth month of pregnancy in humans.

For this development the neurons do not require any nerve growth factor, which is why the researchers suspect that this process is driven by a genetic program. In contrast, the competence to sense pain in the sensory neurons can only develop with the aid of nerve growth factor (NGF). It takes place at a later stage in embryonic development and even after birth.

*Developmental waves of mechanosensitivity acquisition in sensory neuron subtypes during embryonic development

Stefan G Lechner, Henning Frenzel1, Rui Wang1 and Gary R Lewin*

Department of Neuroscience, Max Delbrück Center for Molecular Medicine, Berlin-Buch, Germany

*Corresponding author

Barbara Bachtler
Press and Public Affairs
Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch
Robert-Rössle-Straße 10
13125 Berlin, Germany
Phone: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de

Barbara Bachtler | Max-Delbrück-Centrum
Further information:
http://www.mdc-berlin.de/

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>