Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Invasion without a stir

21.12.2009
HZI researchers redefine the invasion mechanism of Salmonella

"Based on our data, the molecular mechanism of infection employed by Salmonella has to be revised," says Klemens Rottner, head of the HZI research group "Cytoskeleton Dynamics". The group's results have now been published in the current issue of the scientific journal "Cellular Microbiology".

Salmonella are highly adaptive bacteria. They can live in the presence and absence of oxygen and thus propagate in the gut. The ingestion by humans occurs mainly via contaminated egg dishes such as mayonnaise or raw milk products as well as meat or sausages. Infections with Salmonella lead to severe diarrhea and fever, particularly in patients harbouring a compromised immune system.

Although Salmonella are long-known pathogens, the precise mechanisms of infection are incompletely understood. The bacteria inject a protein cocktail using a "molecular syringe" into host cells, leading to dramatic rearrangements of cytoskeletal filaments below the cell membrane. As a result, membrane waves are formed, which enclose the bacteria, and apparently facilitate their invasion. Those characteristic membrane waves are called "ruffles", the process is known as "ruffling". Until now, researchers regarded the formation of these ruffles as absolutely essential for bacterial entry.

In a collaborative effort, HZI research groups "Cytoskeleton dynamics" and "Signalling and Motility" now succeeded in shedding new light on the infection strategy of Salmonella. "We wanted to improve our mechanistic understanding of how Salmonella invade their host cells," says Jan Hänisch, who performed most experiments in the course of his PhD-thesis. Cells that were engineered to lack those membrane ruffles normally induced during Salmonella infection still engulfed the bacteria. "We showed for the first time that membrane ruffles are not essential for the bacteria to penetrate the host cell membrane." Since ruffling was used so far as signature of successful host cell invasion by this pathogen, the usefulness of such methods has to be reconsidered.

Finally, the researchers discovered a new piece in the puzzle of Salmonella entry, called WASH. This novel factor promotes bacterial invasion by contributing to the formation of host cell cytoskeletal filaments important for entry. "Our results have significant impact on the molecular and mechanistic understanding of the infection strategy used by this pathogen," says Rottner, "and on the development of novel strategies to screen for potential inhibitors of the entry process in the future."

Original article: Molecular dissection of Salmonellen-induced membrane ruffling versus invasion. Hänisch J, Ehinger J, Ladwein M, Rohde M, Derivery E, Bosse T, Steffen A, Bumann D, Misselwitz B, Hardt WD, Gautreau A, Stradal TE, Rottner K. Cell Microbiol. (2010) 12(1), 84. doi:10.1111/j.1462-5822.2009.01380.x

Dr. Bastian Dornbach | EurekAlert!
Further information:
http://www.helmholtz-hzi.de

Further reports about: HZI Invasion Salmonella cell membrane cytoskeleton host cells

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>