Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


International team sheds new light on biology underlying schizophrenia


Genes, pathways identified could inform new approaches to treatment

As part of a multinational, collaborative effort, researchers from Canada's Centre for Addiction and Mental Health (CAMH) have helped identify over 100 locations in the human genome associated with the risk of developing schizophrenia, in what is the largest genomic study published on any psychiatric disorder to date.

The findings, published online in Nature, point to biological mechanisms and pathways that may underlie schizophrenia, and could lead to new approaches to treating the disorder, which has seen little innovation in drug development in more than 60 years.

The research was led by senior author Michael O'Donovan at Cardiff University School of Medicine, and CAMH was the only Canadian site in the collaboration.

Schizophrenia, a debilitating mental illness that affects approximately one out of every 100 people worldwide, is characterized by hallucinations, delusions, and disordered thinking, and often emerges in the teens and early 20s. Its lifetime impact on individuals and society is high, both in terms of direct health-care and other costs, as well as lost productivity and unemployment, which costs an estimated $6.85 billion a year in Canada.

Medications currently on the market treat only one of the symptoms of the illness (psychosis), and there are no effective treatments for the debilitating cognitive symptoms of schizophrenia. In part, treatment options are limited because the biological mechanisms underlying schizophrenia have not been understood.

Recent research focusing on the genetic underpinnings of schizophrenia has revealed the complexity of the illness. Evidence suggests that it is caused by the combined effects of many genes, and roughly two dozen genomic regions have been found to be associated with schizophrenia. The new study confirms those earlier findings, and expands our understanding of the genetic basis of schizophrenia and its underlying biology.

In the genome-wide association study (GWAS) published in Nature, the authors looked at 36,989 genetic samples from schizophrenia patients and 113,075 healthy volunteers and found 108 specific locations in the human genome associated with risk for schizophrenia. Eighty-three of those loci had not previously been linked to the illness.

"Large collaborative efforts such as this one are needed to identify genes that influence complex disorders," said Dr. Jo Knight, Senior Scientist and Joanne Murphy Professor in Behavioural Science, who spearheaded CAMH's involvement in this project. "The result is a major advance in understanding the genetic basis of brain functioning in schizophrenia," said Dr. Knight, who is also Associate Professor of Psychiatry at the University of Toronto.

The study was conducted within CAMH's Campbell Family Mental Health Research Institute, and CAMH researchers Dr. James Kennedy and Dr. Clement Zai were also on the study team.

The study implicates genes expressed in brain tissue, particularly those related to the functioning of brain cells (neurons) and of the channels enabling chemical and electrical signaling between neurons (synapses). These include genes that are active in pathways controlling synaptic plasticity – a function essential to learning and memory – and pathways governing activity in the target cell receiving signals.

Additionally, the researchers found a smaller number of genes associated with schizophrenia that are active in the immune system. This discovery offers some support for a previously hypothesized link between schizophrenia and immunological processes. The study also found an association between the illness and the region of the genome that holds DRD2 – the gene that produces the dopamine receptor targeted by all approved medications for schizophrenia – suggesting that other loci uncovered in the study may point to additional therapeutic targets.

"The fact that we were able to detect genetic risk factors on this massive scale shows that schizophrenia can be tackled by the same approaches that have already transformed our understanding of other diseases," said senior author Dr. Michael O'Donovan, deputy director of the MRC Centre for Neuropsychiatric Genetics and Genomics at Cardiff University School of Medicine. "The wealth of new findings has the potential to kick-start the development of new treatments in schizophrenia, a process which has stalled for the last 60 years."

The study is the result of several years of work by the Schizophrenia Working Group of the Psychiatric Genomics Consortium (PGC), an international, multi-institutional collaboration founded in 2007 to conduct broad-scale analyses of genetic data for psychiatric disease. A total of 55 datasets from more than 40 different contributors, including CAMH, was needed to conduct the analysis.

The samples used in this study represent all of the genotyped datasets for schizophrenia that the consortium has amassed to date. The PGC is currently genotyping new samples to further study schizophrenia and additional psychiatric diseases, including autism and bipolar disorder.


Core funding for the Psychiatric Genomics Consortium comes from the U.S. National Institute of Mental Health (NIMH), along with numerous grants from governmental and charitable organizations, as well as philanthropic donations. The Canadian contribution was funded in part by the Canadian Institutes of Health Research grant MOP-115097.

The Centre for Addiction and Mental Health (CAMH) is Canada's largest mental health and addiction teaching hospital, as well as one of the world's leading research centres in its field. CAMH combines clinical care, research, education, policy development and health promotion to help transform the lives of people affected by mental health and addiction issues. CAMH is fully affiliated with the University of Toronto, and is a Pan American Health Organization/World Health Organization Collaborating Centre. For more information, please visit

Media Contact:

Kate Richards
Media Relations
Centre for Addiction and Mental Health (CAMH)
416 535 8501 x36015

Kate Richards | Eurek Alert!

Further reports about: CAMH Genomics Health Medicine Mental Schizophrenia diseases disorder genes illness pathways schizophrenia symptoms

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

First results of NSTX-U research operations

26.10.2016 | Physics and Astronomy

UCI and NASA document accelerated glacier melting in West Antarctica

26.10.2016 | Earth Sciences

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

More VideoLinks >>>