Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

International team sheds new light on biology underlying schizophrenia

22.07.2014

Genes, pathways identified could inform new approaches to treatment

As part of a multinational, collaborative effort, researchers from Canada's Centre for Addiction and Mental Health (CAMH) have helped identify over 100 locations in the human genome associated with the risk of developing schizophrenia, in what is the largest genomic study published on any psychiatric disorder to date.

The findings, published online in Nature, point to biological mechanisms and pathways that may underlie schizophrenia, and could lead to new approaches to treating the disorder, which has seen little innovation in drug development in more than 60 years.

The research was led by senior author Michael O'Donovan at Cardiff University School of Medicine, and CAMH was the only Canadian site in the collaboration.

Schizophrenia, a debilitating mental illness that affects approximately one out of every 100 people worldwide, is characterized by hallucinations, delusions, and disordered thinking, and often emerges in the teens and early 20s. Its lifetime impact on individuals and society is high, both in terms of direct health-care and other costs, as well as lost productivity and unemployment, which costs an estimated $6.85 billion a year in Canada.

Medications currently on the market treat only one of the symptoms of the illness (psychosis), and there are no effective treatments for the debilitating cognitive symptoms of schizophrenia. In part, treatment options are limited because the biological mechanisms underlying schizophrenia have not been understood.

Recent research focusing on the genetic underpinnings of schizophrenia has revealed the complexity of the illness. Evidence suggests that it is caused by the combined effects of many genes, and roughly two dozen genomic regions have been found to be associated with schizophrenia. The new study confirms those earlier findings, and expands our understanding of the genetic basis of schizophrenia and its underlying biology.

In the genome-wide association study (GWAS) published in Nature, the authors looked at 36,989 genetic samples from schizophrenia patients and 113,075 healthy volunteers and found 108 specific locations in the human genome associated with risk for schizophrenia. Eighty-three of those loci had not previously been linked to the illness.

"Large collaborative efforts such as this one are needed to identify genes that influence complex disorders," said Dr. Jo Knight, Senior Scientist and Joanne Murphy Professor in Behavioural Science, who spearheaded CAMH's involvement in this project. "The result is a major advance in understanding the genetic basis of brain functioning in schizophrenia," said Dr. Knight, who is also Associate Professor of Psychiatry at the University of Toronto.

The study was conducted within CAMH's Campbell Family Mental Health Research Institute, and CAMH researchers Dr. James Kennedy and Dr. Clement Zai were also on the study team.

The study implicates genes expressed in brain tissue, particularly those related to the functioning of brain cells (neurons) and of the channels enabling chemical and electrical signaling between neurons (synapses). These include genes that are active in pathways controlling synaptic plasticity – a function essential to learning and memory – and pathways governing activity in the target cell receiving signals.

Additionally, the researchers found a smaller number of genes associated with schizophrenia that are active in the immune system. This discovery offers some support for a previously hypothesized link between schizophrenia and immunological processes. The study also found an association between the illness and the region of the genome that holds DRD2 – the gene that produces the dopamine receptor targeted by all approved medications for schizophrenia – suggesting that other loci uncovered in the study may point to additional therapeutic targets.

"The fact that we were able to detect genetic risk factors on this massive scale shows that schizophrenia can be tackled by the same approaches that have already transformed our understanding of other diseases," said senior author Dr. Michael O'Donovan, deputy director of the MRC Centre for Neuropsychiatric Genetics and Genomics at Cardiff University School of Medicine. "The wealth of new findings has the potential to kick-start the development of new treatments in schizophrenia, a process which has stalled for the last 60 years."

The study is the result of several years of work by the Schizophrenia Working Group of the Psychiatric Genomics Consortium (PGC), an international, multi-institutional collaboration founded in 2007 to conduct broad-scale analyses of genetic data for psychiatric disease. A total of 55 datasets from more than 40 different contributors, including CAMH, was needed to conduct the analysis.

The samples used in this study represent all of the genotyped datasets for schizophrenia that the consortium has amassed to date. The PGC is currently genotyping new samples to further study schizophrenia and additional psychiatric diseases, including autism and bipolar disorder.

###

Core funding for the Psychiatric Genomics Consortium comes from the U.S. National Institute of Mental Health (NIMH), along with numerous grants from governmental and charitable organizations, as well as philanthropic donations. The Canadian contribution was funded in part by the Canadian Institutes of Health Research grant MOP-115097.

The Centre for Addiction and Mental Health (CAMH) is Canada's largest mental health and addiction teaching hospital, as well as one of the world's leading research centres in its field. CAMH combines clinical care, research, education, policy development and health promotion to help transform the lives of people affected by mental health and addiction issues. CAMH is fully affiliated with the University of Toronto, and is a Pan American Health Organization/World Health Organization Collaborating Centre. For more information, please visit http://www.camh.ca.

Media Contact:

Kate Richards
Media Relations
Centre for Addiction and Mental Health (CAMH)
416 535 8501 x36015
kate.richards@camh.ca

Kate Richards | Eurek Alert!

Further reports about: CAMH Genomics Health Medicine Mental Schizophrenia diseases disorder genes illness pathways schizophrenia symptoms

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>