Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

International team discovers gene associated with epilepsy

19.11.2008
A University of Iowa-led international research team has found a new gene associated with the brain disorder epilepsy. While the PRICKLE1 gene mutation was specific to a rare form of epilepsy, the study results could help lead to new ideas for overall epilepsy treatment.

The findings, which involved nearly two dozen institutions from six different countries, appear in the Nov. 7 issue of the American Journal of Human Genetics.

In epilepsy, nerve cells in the brain signal abnormally and cause repeated seizures that can include strange sensations, severe muscle spasms and loss of consciousness. The seizures may not have lasting effects but can affect activities, such as limiting a person's ability to drive. Most seizures do not cause brain damage but some types of epilepsy lead to physical disabilities and cognitive problems. Medications can control symptoms, but there is no cure.

"The study results were surprising not only because the PRICKLE1 gene had never been associated with epilepsy but also because the gene was not associated with any other human disease," said the study's lead author Alex Bassuk, M.D., Ph.D., assistant professor of pediatrics at the University of Iowa Carver College of Medicine and a pediatric neurologist with University of Iowa Children's Hospital.

The nine families involved in the study all lived in the Middle East and came from one of three family lines. Of the 47 individuals in the three family lines, 23 had a form of progressive myoclonus epilepsy accompanied by ataxia -- a condition that causes imbalance.

One family line has been extensively described by Hatem El-Shanti, M.D., a University of Iowa adjunct professor of pediatrics who now leads genetics research for the country of Qatar. The two other family lines had been researched by Sam Berkovic, M.D., at the University of Melbourne in Australia.

"By sharing and analyzing data sets, we realized there was a common mutation in the PRICKLE1 gene in the family members with this form of epilepsy," Bassuk said.

To verify that the mutation might be related to the epilepsy, the team needed to test it in an animal model. This next step to find a suitable animal model involved a surprising coincidence: Bassuk, who had only recently joined the UI, realized through online research that the PRICKLE1 gene in zebrafish had been previously identified by another University of Iowa researcher, Diane Slusarki, Ph.D., associate professor of biology in the UI College of Liberal Arts and Sciences.

"I walked across the river to Diane's side of campus, and we designed an experiment to test the human mutation in the zebrafish," Bassuk said. It was 'Iowa luck.'"

Slusarki and Bassuk's collaboration revealed that the mutated PRICKLE1 gene does not behave normally in zebrafish. Bassuk noted that collaboration, whether on-campus or international, was essential to the success of the research study.

"We never could have done, or could continue to do this type of research, with just one person thinking about it," he said. "From the clinicians who found and took histories on the study participants, to antibody testing at Stanford University to DNA shared from colleagues in Japan, the study required a lot of collaboration and coordination. And of course, we greatly appreciated the participation of the Mideastern families."

Bassuk, and colleagues are now developing other animal models to investigate how PRICKLE1 gene is involved in epilepsy, and are investigating whether PRICKLE1 mutations are involved in the general population of patients with epilepsy. With that information, there is potential to develop new drugs for people with different forms of epilepsy in the general population, as well as for the study participants with the disease.

Becky Soglin | EurekAlert!
Further information:
http://www.uiowa.edu

More articles from Life Sciences:

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

nachricht The dark side of cichlid fish: from cannibal to caregiver
20.04.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>