Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

International team discovers gene associated with epilepsy

19.11.2008
A University of Iowa-led international research team has found a new gene associated with the brain disorder epilepsy. While the PRICKLE1 gene mutation was specific to a rare form of epilepsy, the study results could help lead to new ideas for overall epilepsy treatment.

The findings, which involved nearly two dozen institutions from six different countries, appear in the Nov. 7 issue of the American Journal of Human Genetics.

In epilepsy, nerve cells in the brain signal abnormally and cause repeated seizures that can include strange sensations, severe muscle spasms and loss of consciousness. The seizures may not have lasting effects but can affect activities, such as limiting a person's ability to drive. Most seizures do not cause brain damage but some types of epilepsy lead to physical disabilities and cognitive problems. Medications can control symptoms, but there is no cure.

"The study results were surprising not only because the PRICKLE1 gene had never been associated with epilepsy but also because the gene was not associated with any other human disease," said the study's lead author Alex Bassuk, M.D., Ph.D., assistant professor of pediatrics at the University of Iowa Carver College of Medicine and a pediatric neurologist with University of Iowa Children's Hospital.

The nine families involved in the study all lived in the Middle East and came from one of three family lines. Of the 47 individuals in the three family lines, 23 had a form of progressive myoclonus epilepsy accompanied by ataxia -- a condition that causes imbalance.

One family line has been extensively described by Hatem El-Shanti, M.D., a University of Iowa adjunct professor of pediatrics who now leads genetics research for the country of Qatar. The two other family lines had been researched by Sam Berkovic, M.D., at the University of Melbourne in Australia.

"By sharing and analyzing data sets, we realized there was a common mutation in the PRICKLE1 gene in the family members with this form of epilepsy," Bassuk said.

To verify that the mutation might be related to the epilepsy, the team needed to test it in an animal model. This next step to find a suitable animal model involved a surprising coincidence: Bassuk, who had only recently joined the UI, realized through online research that the PRICKLE1 gene in zebrafish had been previously identified by another University of Iowa researcher, Diane Slusarki, Ph.D., associate professor of biology in the UI College of Liberal Arts and Sciences.

"I walked across the river to Diane's side of campus, and we designed an experiment to test the human mutation in the zebrafish," Bassuk said. It was 'Iowa luck.'"

Slusarki and Bassuk's collaboration revealed that the mutated PRICKLE1 gene does not behave normally in zebrafish. Bassuk noted that collaboration, whether on-campus or international, was essential to the success of the research study.

"We never could have done, or could continue to do this type of research, with just one person thinking about it," he said. "From the clinicians who found and took histories on the study participants, to antibody testing at Stanford University to DNA shared from colleagues in Japan, the study required a lot of collaboration and coordination. And of course, we greatly appreciated the participation of the Mideastern families."

Bassuk, and colleagues are now developing other animal models to investigate how PRICKLE1 gene is involved in epilepsy, and are investigating whether PRICKLE1 mutations are involved in the general population of patients with epilepsy. With that information, there is potential to develop new drugs for people with different forms of epilepsy in the general population, as well as for the study participants with the disease.

Becky Soglin | EurekAlert!
Further information:
http://www.uiowa.edu

More articles from Life Sciences:

nachricht Cnidarians remotely control bacteria
21.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Immune cells may heal bleeding brain after strokes
21.09.2017 | NIH/National Institute of Neurological Disorders and Stroke

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>