Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Intensely colored or brighter plumage: a matter of environment and upbringing

28.05.2010
In contrast to most existing statements in scientific textbooks, yellow and orange plumage colors are a combination of pigment based and structural colors. This was found by researchers of the Max Planck Institute of Ornithology in Seewiesen and colleagues. The intensity of coloration is controlled by pigments and the shine of the feathers depends on their structure (published online in the “American Naturalist”, May 14 2010).

Alain Jacot, researcher of the Max Planck Institute for Ornithology in Seewiesen and colleagues analyzed the yellow coloring of breast feathers of great tits. Like other birds with their splendid red, orange or yellow plumage, the color of breast feathers of great tits is based on carotenoid pigments.

These are natural colorant substances, supplied by food. Research mostly divides plumage color into pigment based and structural color. Structural color develops from the specific structure reflecting light (i.e. keratin structure). “We want to know whether plumage color consist of pigment based or structural colors” says Jacot. The researchers combined fieldwork with lab work and computer simulation. In the field study, the researchers changed the environmental conditions by providing half of the brood with additional carotenoids and by manipulating the brood size - i.e., the number of siblings per brood. “We know from other studies that both factors affect the development of nestlings,” says Jacot.

To alter brood size, the researchers swapped partially the newly hatched chicks among nests and so broods with few or many chicks were created. Within the next days, half of the chicks of a brood were repeatedly fed with small carotenoid-filled pellets while the other nestlings received a placebo pellet. Shortly before the nestlings fledged, the researchers plucked a couple of breast feathers, which were analyzed at a later stage in the lab.

Nestlings that received carotenoid-pellets developed a more intense yellow feather coloration. In contrast, nestlings from small broods had much brighter feathers, while there was no effect on how yellow the feathers were. “We demonstrate in our study that the brightness of a feather depends on its structure and not on the amount of incorporated carotenoid pigments”, says Jacot. “These results show that most, if not all, yellow, orange, and red carotenoid-based colors also incorporate a structural component”. The longstanding division of plumage colors into structural and pigment-based colors is therefore not correct, corresponding to the researchers.

This study also shows that a single feather may be a multi-component signal that reflects different aspects including growth conditions or health state. A great tit with a very bright plumage most likely grew up with few siblings and one with very yellow breast feathers grew up in a territory with carotenoid-rich food. The question why birds from large broods have a less shiny plumage is still unsolved. “It is possible that the nestlings growing up in large broods have to fight more for their food, which causes more abrasion on their feathers” says Jacot. Another reason could be that nestlings from small broods are better fed and therefore are able to develop a thicker feather structure reflecting more light and thus look glossier. [AJ, SP]

Original work:
Alain Jacot, Cristina Romero-Diaz, Barbara Tschirren, Heinz Richner, and Patrick S. Fitze, Dissecting carotenoid from structural components of carotenoid-based coloration: a field experiment with great tits (Parus major)
The American Naturalist. Published Online May 14 2010
DOI: 10.1086/653000
Contact:
Dr. Alain Jacot
Max Planck Institute for Ornithology, Seewiesen, Department Behavioural Ecology and Evolutionary Genetics
Now: Swiss Ornithological Station, Local Office Wallis, CH-3970 Salgesch
Phone: +41 (0)79 77 44 262
E-mail: alain.jacot@vogelwarte.ch
Dr. Sabine Spehn
Max Planck Institute for Ornithology, Seewiesen, Public Relations
Phone +49 (0)8157 932 421
Email: sspehn@orn.mpg.de

Dr. Sabine Spehn | Max-Planck-Institut
Further information:
http://www.orn.mpg.de

More articles from Life Sciences:

nachricht Toward a 'smart' patch that automatically delivers insulin when needed
18.01.2017 | American Chemical Society

nachricht 127 at one blow...
18.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>