Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Intensely colored or brighter plumage: a matter of environment and upbringing

28.05.2010
In contrast to most existing statements in scientific textbooks, yellow and orange plumage colors are a combination of pigment based and structural colors. This was found by researchers of the Max Planck Institute of Ornithology in Seewiesen and colleagues. The intensity of coloration is controlled by pigments and the shine of the feathers depends on their structure (published online in the “American Naturalist”, May 14 2010).

Alain Jacot, researcher of the Max Planck Institute for Ornithology in Seewiesen and colleagues analyzed the yellow coloring of breast feathers of great tits. Like other birds with their splendid red, orange or yellow plumage, the color of breast feathers of great tits is based on carotenoid pigments.

These are natural colorant substances, supplied by food. Research mostly divides plumage color into pigment based and structural color. Structural color develops from the specific structure reflecting light (i.e. keratin structure). “We want to know whether plumage color consist of pigment based or structural colors” says Jacot. The researchers combined fieldwork with lab work and computer simulation. In the field study, the researchers changed the environmental conditions by providing half of the brood with additional carotenoids and by manipulating the brood size - i.e., the number of siblings per brood. “We know from other studies that both factors affect the development of nestlings,” says Jacot.

To alter brood size, the researchers swapped partially the newly hatched chicks among nests and so broods with few or many chicks were created. Within the next days, half of the chicks of a brood were repeatedly fed with small carotenoid-filled pellets while the other nestlings received a placebo pellet. Shortly before the nestlings fledged, the researchers plucked a couple of breast feathers, which were analyzed at a later stage in the lab.

Nestlings that received carotenoid-pellets developed a more intense yellow feather coloration. In contrast, nestlings from small broods had much brighter feathers, while there was no effect on how yellow the feathers were. “We demonstrate in our study that the brightness of a feather depends on its structure and not on the amount of incorporated carotenoid pigments”, says Jacot. “These results show that most, if not all, yellow, orange, and red carotenoid-based colors also incorporate a structural component”. The longstanding division of plumage colors into structural and pigment-based colors is therefore not correct, corresponding to the researchers.

This study also shows that a single feather may be a multi-component signal that reflects different aspects including growth conditions or health state. A great tit with a very bright plumage most likely grew up with few siblings and one with very yellow breast feathers grew up in a territory with carotenoid-rich food. The question why birds from large broods have a less shiny plumage is still unsolved. “It is possible that the nestlings growing up in large broods have to fight more for their food, which causes more abrasion on their feathers” says Jacot. Another reason could be that nestlings from small broods are better fed and therefore are able to develop a thicker feather structure reflecting more light and thus look glossier. [AJ, SP]

Original work:
Alain Jacot, Cristina Romero-Diaz, Barbara Tschirren, Heinz Richner, and Patrick S. Fitze, Dissecting carotenoid from structural components of carotenoid-based coloration: a field experiment with great tits (Parus major)
The American Naturalist. Published Online May 14 2010
DOI: 10.1086/653000
Contact:
Dr. Alain Jacot
Max Planck Institute for Ornithology, Seewiesen, Department Behavioural Ecology and Evolutionary Genetics
Now: Swiss Ornithological Station, Local Office Wallis, CH-3970 Salgesch
Phone: +41 (0)79 77 44 262
E-mail: alain.jacot@vogelwarte.ch
Dr. Sabine Spehn
Max Planck Institute for Ornithology, Seewiesen, Public Relations
Phone +49 (0)8157 932 421
Email: sspehn@orn.mpg.de

Dr. Sabine Spehn | Max-Planck-Institut
Further information:
http://www.orn.mpg.de

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>