Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Insulin-creating cell research may lead to better diabetes treatment

29.10.2010
Beta cells, which make insulin in the human body, do not replicate after the age of 30, indicating that clinicians may be closer to better treating diabetes.

Type 1 diabetes is caused by a loss of beta cells by auto-immunity while type 2 is due to a relative insufficiency of beta cells. Whether beta cells replicate after birth has remained an open issue, and is critically important for designing therapies for diabetes.

By using radioactive carbon-14 produced by above-ground nuclear testing in the 1950s and '60s, researchers have determined that the number of beta cells remains static after age 30.

Lawrence Livermore National Laboratory scientist Bruce Buchholz, with collaborators from the National Institutes of Health, used two methods to examine adult human beta cell turnover and longevity.

Using LLNL's Center for Accelerator Mass Spectrometry, Buchholz measured the amount of carbon 14 in DNA in beta cells and discovered that after age 30, the body does not create any new beta cells, thus decreasing the capacity to produce insulin as a person ages.

Carbon 14 atmospheric concentration levels remained relatively stable until the Cold War, when above-ground nuclear bomb tests caused a sharp increase, or peak, which decreased slowly after the end of above-ground testing in 1963. This spike in carbon 14 in the atmosphere serves as a chronometer of the past 57 years.

Because DNA is stable after a cell has gone through its last cell division, the concentration of carbon 14 in DNA serves as a date mark for when a cell was born and can be used to date cells in humans.

"We found that beta cells turnover up to about age 30, and there they remain throughout life," Buchholz said. "The findings have implications for both type 1 and type 2 diabetes."

Type 1 diabetes is an auto-immune disease in which the body attacks beta cells. Both genetic predisposition and environmental triggers that are poorly understood have been implicated in the disease development. Disease onset is frequent during childhood but can occur throughout life and requires lifelong insulin injections/pump delivery. The body simply lacks the ability to make insulin. Type 2 diabetes (often called adult onset diabetes) is common in older people whose ability to secrete sufficient insulin to regulate blood sugar deteriorates as they age and is often due to increased demand in obese people.

"It could be due to loss of beta cells with age," Buchholz said. "The body doesn't make new ones in adulthood and there might not be enough cells to control blood sugar."

In addition, as the obesity rate increases, the incidence of type 2 diabetes increases and it is now starting to be found in obese children.

Buchholz said there is active research in stem cell therapies to replace lost beta cells for both types of diabetes. "But with these new findings, it isn't clear how easy it will be to get the body to make more beta cells in adulthood, when it is not a natural process," he said. "At the surface, it seems like coaxing the body to do what it does naturally will be easier to accomplish."

The research was funded by the National Institute of Diabetes, Digestive and Kidney Diseases at the National Institutes of Health (NIH) and NIH/National Center for Research Resources. It appears in the October issue of The Journal of Clinical Endocrinology & Metabolism.

Anne Stark | EurekAlert!
Further information:
http://www.llnl.gov
http://www.llnl.gov/news/newsreleases/2010/Oct/NR-10-10-05.html

More articles from Life Sciences:

nachricht Complete skin regeneration system of fish unraveled
24.04.2018 | Tokyo Institute of Technology

nachricht Scientists generate an atlas of the human genome using stem cells
24.04.2018 | The Hebrew University of Jerusalem

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Quantum Technology for Advanced Imaging – QUILT

24.04.2018 | Information Technology

AWI researchers measure a record concentration of microplastic in arctic sea ice

24.04.2018 | Earth Sciences

Complete skin regeneration system of fish unraveled

24.04.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>