Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Insights into Cell Division - Max Planck Researchers Develop Minimal System

14.01.2013
All living organisms consist of cells that have arisen from other living cells by the process of cell division.

However, it is not yet fully understood just how this important process takes place. Scientists at the MPI of Biochemistry have now developed a minimal biological system, which brings together key components of the cell division apparatus. With the aid of this minimal model, the researchers were able to take a closer look at the biophysical mechanisms involved.


Motor protein (red) bind to actin filaments (green) - a first step to the physical division of a cell.

Picture: Sven Vogel / Copyright: MPI of Biochemistry

“Our model may help to develop and test new treatments for diseases caused by errors in cell division,” said Sven Vogel, scientist at the MPI of Biochemistry. The results have now been published in the journal eLife.

The researchers of the department “Cellular and Molecular Biophysics” try to remodel the structures of a cell with the help of a modular approach. Their aim is to observe and visualize step by step the underlying mechanisms of living systems. “Our vision is to assemble more and more building blocks of natural and synthetic biomolecules until we finally have the minimal version of a cell in front of us,” said Petra Schwille, director at the MPI of Biochemistry. Using such an approach, the scientists have now succeeded in investigating the process of cell division in greater detail.

Making two out of one
During cell division both the genetic information and the cell plasma must be distributed correctly to the two daughter cells. Moreover, the two newly created cells must be separated physically from each other. An important component of this cell division machinery is the cell cortex. This layer is located directly below the cell membrane and consists of a thin layer of thread-like protein chains, so-called actin filaments. During the actual division process, myosin motors from the interior of the cell exert force on the actin filaments, causing the cell cortex to constrict in the middle and ultimately to divide.

The Max Planck researchers have now constructed an artificial minimal actin cortex (MAC) on which they can study the physical phenomena more precisely. To achieve this, the researchers combined only the most essential components of the cell division machinery, thus creating a synthetic minimal system. Such a system is a very simplified model for complex processes. In nature, by contrast, cells took several million years to develop and were not precisely planned and constructed. “For that reason some of the processes may be more complex than they theoretically need to be,” the biophysicist Sven Vogel said. “This complexity often makes it almost impossible to study the basic mechanisms in detail.”

One research finding the minimal system revealed was that the addition of myosin motors to the MAC induces actin pattern formation. Moreover, the myosin motors break individual actin filaments into fragments and compact them. The Martinsried researchers are certain that artificial minimal systems will contribute to a detailed understanding of cell division. Vogel added: “Our findings and minimal systems may help to develop and test new treatments for diseases that are caused by errors in cell division.”

Anja Konschak | Max-Planck-Institut
Further information:
http://www.biochem.mpg.de/en/news/pressroom/index.html
http://www.biochem.mpg.de/en/rd/schwille/

More articles from Life Sciences:

nachricht Molecular microscopy illuminates molecular motor motion
26.07.2017 | Penn State

nachricht New virus discovered in migratory bird in Rio Grande do Sul, Brazil
26.07.2017 | Fundação de Amparo à Pesquisa do Estado de São Paulo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>