Insights into a new therapy for a rare form of cystic fibrosis

Cystic fibrosis is an inherited disease afflicting about 70,000 people around the world. Cystic fibrosis patients carry a defective gene that disables or destroys its protein product, which normally regulates the transport of ions across cell borders.

When that transport is disrupted, the viscosity of the mucus coating certain organs becomes too thick. A characteristic feature of the disease is thick mucus buildup in the air passages, which causes difficulty breathing and recurring infections.

While the FDA approved the drug VX-770 (also known by the trade names Kalydeco and Ivacaftor) to ease breathing in people with cystic fibrosis caused by a particular mutation in the CFTR protein (the acronym is short for cystic fibrosis transmembrane conductance regulator), exactly how VX-770 worked in those patients was unknown.

Scientists have understood for some time that normal CFTR regulation requires modification of the protein and binding of a small, energy-providing molecule – adenosine triphosphate, or ATP. But, in their recent Journal of Biological Chemistry “Paper of the Week,” Christine Bear and colleagues report that the drug opens both normal and mutant CFTR channels without ATP. Their results indicate that the compound binds to a different site on CTFR than ATP. Significantly, this finding may be useful in developing therapies for cystic fibrosis caused by various CFTR mutations that, like the G551D mutation that was studied, impair ATP-mediated channel regulation.

Bear's group determined how VX-770 works after developing a new experimental system that may have potential for discovering drugs that target the basic defects caused by CFTR mutations, Bear says. The system is useful for identifying compounds that interact with rare mutations such as G551D as well as the major CFTR mutant F508del, she said.

From the article: “CFTR potentiator VX-770 (Ivacaftor) opens the defective channel gate of mutant CFTR in a phosphorylation-dependent but ATP-independent manner” by Paul D.W. Eckford, Canhui Li, Mohabir Ramjeesingh and Christine E. Bear.

Corresponding author: Christine E. Bear, Programme of Molecular Structure & Function, Research Institute, Hospital for Sick Children, in Toronto, Ontario, Canada; email: bear@sickkids.ca.

Written by Danielle Gutierrez

Media Contact

Angela Hopp EurekAlert!

More Information:

http://www.asbmb.org

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

A universal framework for spatial biology

SpatialData is a freely accessible tool to unify and integrate data from different omics technologies accounting for spatial information, which can provide holistic insights into health and disease. Biological processes…

How complex biological processes arise

A $20 million grant from the U.S. National Science Foundation (NSF) will support the establishment and operation of the National Synthesis Center for Emergence in the Molecular and Cellular Sciences (NCEMS) at…

Airborne single-photon lidar system achieves high-resolution 3D imaging

Compact, low-power system opens doors for photon-efficient drone and satellite-based environmental monitoring and mapping. Researchers have developed a compact and lightweight single-photon airborne lidar system that can acquire high-resolution 3D…

Partners & Sponsors