Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New insight into double-protected dance of cell division

06.03.2013
Biochemists at the University of Massachusetts Amherst including assistant professor Peter Chien recently gained new insight into how protein synthesis and degradation help to regulate the delicate ballet of cell division. In particular, they reveal how two proteins shelter each other in “mutually assured cleanup” to insure that division goes smoothly and safely.
Cells must routinely dispose of leftover proteins with the aid of proteases that cut up and recycle used proteins. The problem for biochemists is that the same protein molecule can be toxic garbage at one time, but essential for function at another time such as during the cell cycle, that is, events that unfold to achieve replication of chromosomes and division of the cell.

As Chien explains, “We know that a process that has to happen as reliably and stably as cell division also has to be flexible enough to allow the organism to grow and respond to its ever-changing environment. We’re interested in uncovering all the steps and back-up safeguards that cells use to robustly protect replication while at the same time allowing other functions to proceed.” Results appear in the early online edition of Molecular Microbiology.

To do this work, Amber Cantin in Chien’s lab, closely collaborated with Michael Laub and colleagues at MIT to look in a bacteria, Caulobacter, where they had previously figured out how cells distinguish waste proteins from useful molecules. They focused on a protein called CtrA that sits on DNA like a cap, controlling replication until conditions are right for division to occur.

Destruction of CtrA allows cells to start replicating their chromosome. Cantin used biochemical experiments with highly purified proteins to show that CtrA was only degraded when it was bound to DNA and that another protein, SciP, could help make CtrA bind better to DNA, making CtrA more resistant to proteolysis.

Surprisingly, this also made SciP less able to be destroyed as well, showing that both proteins prevent their own destruction by protecting each other. In addition, while both proteins were destroyed, they were recognized by completely different proteases. These advances, along with current findings, may offer medical researchers a clue for understanding diseases such as abnormal cell cycle progression in cancer.

This work was funded by a grant from the National Institutes of Health and additional funds from UMass Amherst.

Janet Lathrop | EurekAlert!
Further information:
http://www.umass.edu

Further reports about: Amherst Cantin CtrA DNA SCIP cell cycle molecular microbiology

More articles from Life Sciences:

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

NASA eyes Pineapple Express soaking California

24.02.2017 | Earth Sciences

New gene for atrazine resistance identified in waterhemp

24.02.2017 | Agricultural and Forestry Science

New Mechanisms of Gene Inactivation may prevent Aging and Cancer

24.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>