Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Inside a plant’s pharma factory

02.04.2012
A newly discovered enzyme brings scientists one step closer to understanding how plants manufacture a molecule with potent medicinal properties
Plants of the genus Glycyrrhiza are best known as key ingredients in the popular treat licorice, but they also have a valuable place in the medicine cabinet. These plants employ a complex assembly line of enzymes to produce a molecule called glycyrrhizin, a potent sweetener that also acts as a highly effective anti-inflammatory and antiviral agent.

The process of glycyrrhizin biosynthesis is incompletely understood, but research from a team led by Kazuki Saito and Toshiyuki Muranaka at the RIKEN Plant Science Center in Yokohama helps to fill some of the gaps. According to Saito, these efforts depended on close collaboration between multiple research teams. Members of the ‘All-Japan Licorice Research Consortium’, pooled their research resources, which was the strong basis for the success of this project, according to Saito.

The researchers were particularly interested in enzymes known as cytochrome P450 mono-oxygenases. For a previous study, they prepared a large library of gene sequences expressed by Glycyrrhiza to identify previously uncharacterized P450s2. This time around, Saito and Muranaka performed a functional assay in which they expressed several of these putative P450s in cultured cells so they could identify enzymes that act on specific intermediates in glycyrrhizin manufacture.
They identified one protein, CYP72A154, which recognized the early glycyrrhizin intermediate 11-oxo-â-amyrin as a substrate. Remarkably, this enzyme appears to perform multiple sequential oxidation reactions on this compound, effectively moving the synthetic process forward three steps. To confirm these findings, they tested the function of CYP72A154 by co-expressing it alongside other enzymes known to participate in this biological process. “We achieved biotechnological production of glycyrrhetinic acid, an intermediate of glycyrrhizin, by means of synthetic biology in yeast,” says Muranaka.

This demonstration of partial glycyrrhizin biosynthesis represents an important step in the right direction: even though this valuable molecule is easily purified from licorice plants, scientists may ultimately find themselves forced to resort to laboratory production methods. “There is a potential risk of a shortage of natural resources in the near future,” says Saito. “Another problem is that China, the dominant supplier of licorice, is setting restrictions on licorice exports as a governmental policy.”

Several pieces are still missing from the puzzle, but Saito and Muranaka are excited to learn what remains to be found, both from a biotechnology perspective and in terms of understanding aspects of plant evolutionary history. “We still don’t know why and how higher plants have evolved the production systems for such interesting compounds,” says Muranaka.

The corresponding author for this highlight is based at the Metabolomic Function Research Group, RIKEN Plant Science Center

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Life Sciences:

nachricht Repairing damaged hearts with self-healing heart cells
22.08.2017 | National University Health System

nachricht Biochemical 'fingerprints' reveal diabetes progression
22.08.2017 | Umea University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>