Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Inside a plant’s pharma factory

02.04.2012
A newly discovered enzyme brings scientists one step closer to understanding how plants manufacture a molecule with potent medicinal properties
Plants of the genus Glycyrrhiza are best known as key ingredients in the popular treat licorice, but they also have a valuable place in the medicine cabinet. These plants employ a complex assembly line of enzymes to produce a molecule called glycyrrhizin, a potent sweetener that also acts as a highly effective anti-inflammatory and antiviral agent.

The process of glycyrrhizin biosynthesis is incompletely understood, but research from a team led by Kazuki Saito and Toshiyuki Muranaka at the RIKEN Plant Science Center in Yokohama helps to fill some of the gaps. According to Saito, these efforts depended on close collaboration between multiple research teams. Members of the ‘All-Japan Licorice Research Consortium’, pooled their research resources, which was the strong basis for the success of this project, according to Saito.

The researchers were particularly interested in enzymes known as cytochrome P450 mono-oxygenases. For a previous study, they prepared a large library of gene sequences expressed by Glycyrrhiza to identify previously uncharacterized P450s2. This time around, Saito and Muranaka performed a functional assay in which they expressed several of these putative P450s in cultured cells so they could identify enzymes that act on specific intermediates in glycyrrhizin manufacture.
They identified one protein, CYP72A154, which recognized the early glycyrrhizin intermediate 11-oxo-â-amyrin as a substrate. Remarkably, this enzyme appears to perform multiple sequential oxidation reactions on this compound, effectively moving the synthetic process forward three steps. To confirm these findings, they tested the function of CYP72A154 by co-expressing it alongside other enzymes known to participate in this biological process. “We achieved biotechnological production of glycyrrhetinic acid, an intermediate of glycyrrhizin, by means of synthetic biology in yeast,” says Muranaka.

This demonstration of partial glycyrrhizin biosynthesis represents an important step in the right direction: even though this valuable molecule is easily purified from licorice plants, scientists may ultimately find themselves forced to resort to laboratory production methods. “There is a potential risk of a shortage of natural resources in the near future,” says Saito. “Another problem is that China, the dominant supplier of licorice, is setting restrictions on licorice exports as a governmental policy.”

Several pieces are still missing from the puzzle, but Saito and Muranaka are excited to learn what remains to be found, both from a biotechnology perspective and in terms of understanding aspects of plant evolutionary history. “We still don’t know why and how higher plants have evolved the production systems for such interesting compounds,” says Muranaka.

The corresponding author for this highlight is based at the Metabolomic Function Research Group, RIKEN Plant Science Center

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>