Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Insecticide Resistance Caused by Recombination of Two Genes

12.09.2012
Novel enzyme makes cotton bollworm resistant against pyrethroids

Insecticide resistance in crop pests is a serious global problem. Scientists of the Max Planck Institute for Chemical Ecology in Jena, Germany, have now found out what causes the strong resistance of an Australian strain of cotton bollworms (Helicoverpa armigera) to fenvalerate.


Moth (male) of the globally dreaded pest insect, Helicoverpa armigera

MPI for Chemical Ecology/Joußen

The larvae evolved a novel enzyme capable of detoxifying fenvalerate in one single chemical reaction from the group of so-called P450 monooxygenases. The gene encoding the enzyme is a chimera − a combination of parts of two precursor genes. (PNAS, Early Edition, September 4th, 2012. DOI: 10.1073/pnas.1202047109)

Helicoverpa armigera: a global pest

Larvae of the cotton bollworm (Helicoverpa armigera) are dreaded pests all over the world. They have a very wide host range: About 200 different plant species are known as potential food for the voracious insect. The herbivore attacks crops in Africa, South Europe, India, Central Asia, New Zealand, and Australia. Nearly 30% of all globally used insecticides − Bt toxins as well as pyrethroids − are applied to protect cotton and other crops against the bollworm.

Resistance to pyrethroids

Pyrethroids are synthetic substances based on compounds of the natural insecticide pyrethrum in Tansy flowers (Tanacetum). They have been successfully applied in fruit, vegetable and crop farming for decades. In cotton bollworms, development of resistance to the particularly effective pyrethroid fenvalerate was observed in Australia since 1983. In 1998, David Heckel, who became director at the Max Planck Institute for Chemical Ecology in 2004, mapped the location of the resistance gene in the genome of the insect for the first time. This gene locus was later found to encode a P450 monooxygenase enzyme. These so-called cytochrome P450 (CYP) enzymes are also known in human medicine, because they can render toxins or pharmaceuticals ineffective by metabolizing the active molecule.

Nicole Joußen, scientist at the institute and expert on P450 enzymes, studied the Helicoverpa armigera strain “TWB” resistant to fenvalerate. She could identify the P450 monooxygenase in this strain, suspected to mediate pyrethroid resistance. After cloning larger genome regions, DNA sequencing, and performing crossing experiments as well as biochemical analyses, she was surprised to find that of the seven P450 enzymes only one, CYP337B3, hydroxylates the fenvalerate molecule to 4‘-hydroxyfenvalerate. This chemical reaction increases the resistance to this toxin 42-fold: A LD50 value of 1.9 µg of fenvalerate was measured in resistant TWB larvae, whereas half of the non-resistant caterpillars died after intake of only 0.04 µg of the toxin.

Unequal Crossing-Over led to the formation of the CYP337B3 Gene

The CYP337B3 gene was formed in a very special way: by a process called “unequal crossing-over” by geneticists. If very similar DNA sequences, for example transposable elements, get in contact with one another during the division of cell nuclei, novel gene combinations occur. As a consequence, some of the genetic information is lost on one DNA strand, and new genetic information is inserted and sometimes even doubled on the other strand. This natural process is important for the evolution of gene families, as could now be observed in the case of the CYP337B3 gene. “For the first time, our results reveal a mutation mediating resistance to an insecticide, which is caused by a crossing-over event,” says David Heckel. The scientists studied CYP337B3 and found that the gene consists of parts of two other P450 genes, B1 and B2, encoding enzymes neither of which can detoxify fenvalerate. The unique combination of parts of the B1 and B2 precursor genes in the chimeric B3 gene is responsible for the new capability of the P450 enzyme to bind, hydroxylate, and finally detoxify the insecticide.

Once the CYP337B3 gene was formed, spraying cotton bollworms with pyrethroids caused its frequency in the population to gradually increase. This resistance was successfully delayed in Australia by restricting the use of pyrethroids to once per year, and using other insecticides at other times. This contrasts with the situation in other cotton-growing countries, where pyrethroids were overused, resistance rapidly developed, and then pyrethroids became ineffective against the bollworm. [AO/JWK]

Original Publication:

Nicole Joußen, Sara Agnolet, Sybille Lorenz, Sebastian E. Schöne, Renate Ellinger, Bernd Schneider, David G. Heckel (2012). Resistance of Australian Helicoverpa armigera to fenvalerate is due to the chimeric P450 enzyme CYP337B3. Proceedings of the National Academy of Sciences USA, Early Edition, 4. September 2012. DOI: 10.1073/pnas.1202047109.

Further Information:

Dr. Nicole Joußen, njoussen@ice.mpg.de, +49-(0)3641-57 1552

Prof. Dr. David G. Heckel, heckel@ice.mpg.de, +49-(0)3641-57 1501

Picture Requests:
Angela Overmeyer M.A., +49 3641 57-2110, overmeyer@ice.mpg.de
or download from http://www.ice.mpg.de/ext/735.html

Dr. Jan-Wolfhard Kellmann | Max-Planck-Institut
Further information:
http://www.ice.mpg.de
http://www.ice.mpg.de/ext/735.html

More articles from Life Sciences:

nachricht Embryonic development: How do limbs develop from cells?
18.05.2018 | Humboldt-Universität zu Berlin

nachricht Reading histone modifications, an oncoprotein is modified in return
18.05.2018 | American Society for Biochemistry and Molecular Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>