Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Insecticide Resistance Caused by Recombination of Two Genes

Novel enzyme makes cotton bollworm resistant against pyrethroids

Insecticide resistance in crop pests is a serious global problem. Scientists of the Max Planck Institute for Chemical Ecology in Jena, Germany, have now found out what causes the strong resistance of an Australian strain of cotton bollworms (Helicoverpa armigera) to fenvalerate.

Moth (male) of the globally dreaded pest insect, Helicoverpa armigera

MPI for Chemical Ecology/Joußen

The larvae evolved a novel enzyme capable of detoxifying fenvalerate in one single chemical reaction from the group of so-called P450 monooxygenases. The gene encoding the enzyme is a chimera − a combination of parts of two precursor genes. (PNAS, Early Edition, September 4th, 2012. DOI: 10.1073/pnas.1202047109)

Helicoverpa armigera: a global pest

Larvae of the cotton bollworm (Helicoverpa armigera) are dreaded pests all over the world. They have a very wide host range: About 200 different plant species are known as potential food for the voracious insect. The herbivore attacks crops in Africa, South Europe, India, Central Asia, New Zealand, and Australia. Nearly 30% of all globally used insecticides − Bt toxins as well as pyrethroids − are applied to protect cotton and other crops against the bollworm.

Resistance to pyrethroids

Pyrethroids are synthetic substances based on compounds of the natural insecticide pyrethrum in Tansy flowers (Tanacetum). They have been successfully applied in fruit, vegetable and crop farming for decades. In cotton bollworms, development of resistance to the particularly effective pyrethroid fenvalerate was observed in Australia since 1983. In 1998, David Heckel, who became director at the Max Planck Institute for Chemical Ecology in 2004, mapped the location of the resistance gene in the genome of the insect for the first time. This gene locus was later found to encode a P450 monooxygenase enzyme. These so-called cytochrome P450 (CYP) enzymes are also known in human medicine, because they can render toxins or pharmaceuticals ineffective by metabolizing the active molecule.

Nicole Joußen, scientist at the institute and expert on P450 enzymes, studied the Helicoverpa armigera strain “TWB” resistant to fenvalerate. She could identify the P450 monooxygenase in this strain, suspected to mediate pyrethroid resistance. After cloning larger genome regions, DNA sequencing, and performing crossing experiments as well as biochemical analyses, she was surprised to find that of the seven P450 enzymes only one, CYP337B3, hydroxylates the fenvalerate molecule to 4‘-hydroxyfenvalerate. This chemical reaction increases the resistance to this toxin 42-fold: A LD50 value of 1.9 µg of fenvalerate was measured in resistant TWB larvae, whereas half of the non-resistant caterpillars died after intake of only 0.04 µg of the toxin.

Unequal Crossing-Over led to the formation of the CYP337B3 Gene

The CYP337B3 gene was formed in a very special way: by a process called “unequal crossing-over” by geneticists. If very similar DNA sequences, for example transposable elements, get in contact with one another during the division of cell nuclei, novel gene combinations occur. As a consequence, some of the genetic information is lost on one DNA strand, and new genetic information is inserted and sometimes even doubled on the other strand. This natural process is important for the evolution of gene families, as could now be observed in the case of the CYP337B3 gene. “For the first time, our results reveal a mutation mediating resistance to an insecticide, which is caused by a crossing-over event,” says David Heckel. The scientists studied CYP337B3 and found that the gene consists of parts of two other P450 genes, B1 and B2, encoding enzymes neither of which can detoxify fenvalerate. The unique combination of parts of the B1 and B2 precursor genes in the chimeric B3 gene is responsible for the new capability of the P450 enzyme to bind, hydroxylate, and finally detoxify the insecticide.

Once the CYP337B3 gene was formed, spraying cotton bollworms with pyrethroids caused its frequency in the population to gradually increase. This resistance was successfully delayed in Australia by restricting the use of pyrethroids to once per year, and using other insecticides at other times. This contrasts with the situation in other cotton-growing countries, where pyrethroids were overused, resistance rapidly developed, and then pyrethroids became ineffective against the bollworm. [AO/JWK]

Original Publication:

Nicole Joußen, Sara Agnolet, Sybille Lorenz, Sebastian E. Schöne, Renate Ellinger, Bernd Schneider, David G. Heckel (2012). Resistance of Australian Helicoverpa armigera to fenvalerate is due to the chimeric P450 enzyme CYP337B3. Proceedings of the National Academy of Sciences USA, Early Edition, 4. September 2012. DOI: 10.1073/pnas.1202047109.

Further Information:

Dr. Nicole Joußen,, +49-(0)3641-57 1552

Prof. Dr. David G. Heckel,, +49-(0)3641-57 1501

Picture Requests:
Angela Overmeyer M.A., +49 3641 57-2110,
or download from

Dr. Jan-Wolfhard Kellmann | Max-Planck-Institut
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>