Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Insecticide Resistance Caused by Recombination of Two Genes

12.09.2012
Novel enzyme makes cotton bollworm resistant against pyrethroids

Insecticide resistance in crop pests is a serious global problem. Scientists of the Max Planck Institute for Chemical Ecology in Jena, Germany, have now found out what causes the strong resistance of an Australian strain of cotton bollworms (Helicoverpa armigera) to fenvalerate.


Moth (male) of the globally dreaded pest insect, Helicoverpa armigera

MPI for Chemical Ecology/Joußen

The larvae evolved a novel enzyme capable of detoxifying fenvalerate in one single chemical reaction from the group of so-called P450 monooxygenases. The gene encoding the enzyme is a chimera − a combination of parts of two precursor genes. (PNAS, Early Edition, September 4th, 2012. DOI: 10.1073/pnas.1202047109)

Helicoverpa armigera: a global pest

Larvae of the cotton bollworm (Helicoverpa armigera) are dreaded pests all over the world. They have a very wide host range: About 200 different plant species are known as potential food for the voracious insect. The herbivore attacks crops in Africa, South Europe, India, Central Asia, New Zealand, and Australia. Nearly 30% of all globally used insecticides − Bt toxins as well as pyrethroids − are applied to protect cotton and other crops against the bollworm.

Resistance to pyrethroids

Pyrethroids are synthetic substances based on compounds of the natural insecticide pyrethrum in Tansy flowers (Tanacetum). They have been successfully applied in fruit, vegetable and crop farming for decades. In cotton bollworms, development of resistance to the particularly effective pyrethroid fenvalerate was observed in Australia since 1983. In 1998, David Heckel, who became director at the Max Planck Institute for Chemical Ecology in 2004, mapped the location of the resistance gene in the genome of the insect for the first time. This gene locus was later found to encode a P450 monooxygenase enzyme. These so-called cytochrome P450 (CYP) enzymes are also known in human medicine, because they can render toxins or pharmaceuticals ineffective by metabolizing the active molecule.

Nicole Joußen, scientist at the institute and expert on P450 enzymes, studied the Helicoverpa armigera strain “TWB” resistant to fenvalerate. She could identify the P450 monooxygenase in this strain, suspected to mediate pyrethroid resistance. After cloning larger genome regions, DNA sequencing, and performing crossing experiments as well as biochemical analyses, she was surprised to find that of the seven P450 enzymes only one, CYP337B3, hydroxylates the fenvalerate molecule to 4‘-hydroxyfenvalerate. This chemical reaction increases the resistance to this toxin 42-fold: A LD50 value of 1.9 µg of fenvalerate was measured in resistant TWB larvae, whereas half of the non-resistant caterpillars died after intake of only 0.04 µg of the toxin.

Unequal Crossing-Over led to the formation of the CYP337B3 Gene

The CYP337B3 gene was formed in a very special way: by a process called “unequal crossing-over” by geneticists. If very similar DNA sequences, for example transposable elements, get in contact with one another during the division of cell nuclei, novel gene combinations occur. As a consequence, some of the genetic information is lost on one DNA strand, and new genetic information is inserted and sometimes even doubled on the other strand. This natural process is important for the evolution of gene families, as could now be observed in the case of the CYP337B3 gene. “For the first time, our results reveal a mutation mediating resistance to an insecticide, which is caused by a crossing-over event,” says David Heckel. The scientists studied CYP337B3 and found that the gene consists of parts of two other P450 genes, B1 and B2, encoding enzymes neither of which can detoxify fenvalerate. The unique combination of parts of the B1 and B2 precursor genes in the chimeric B3 gene is responsible for the new capability of the P450 enzyme to bind, hydroxylate, and finally detoxify the insecticide.

Once the CYP337B3 gene was formed, spraying cotton bollworms with pyrethroids caused its frequency in the population to gradually increase. This resistance was successfully delayed in Australia by restricting the use of pyrethroids to once per year, and using other insecticides at other times. This contrasts with the situation in other cotton-growing countries, where pyrethroids were overused, resistance rapidly developed, and then pyrethroids became ineffective against the bollworm. [AO/JWK]

Original Publication:

Nicole Joußen, Sara Agnolet, Sybille Lorenz, Sebastian E. Schöne, Renate Ellinger, Bernd Schneider, David G. Heckel (2012). Resistance of Australian Helicoverpa armigera to fenvalerate is due to the chimeric P450 enzyme CYP337B3. Proceedings of the National Academy of Sciences USA, Early Edition, 4. September 2012. DOI: 10.1073/pnas.1202047109.

Further Information:

Dr. Nicole Joußen, njoussen@ice.mpg.de, +49-(0)3641-57 1552

Prof. Dr. David G. Heckel, heckel@ice.mpg.de, +49-(0)3641-57 1501

Picture Requests:
Angela Overmeyer M.A., +49 3641 57-2110, overmeyer@ice.mpg.de
or download from http://www.ice.mpg.de/ext/735.html

Dr. Jan-Wolfhard Kellmann | Max-Planck-Institut
Further information:
http://www.ice.mpg.de
http://www.ice.mpg.de/ext/735.html

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>