Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New infrared light may open new frontier in fighting cancer, Tay Sachs

01.09.2010
A "game-changing" technique using near infrared light enables scientists to look deeper into the guts of cells, potentially opening up a new frontier in the fights against cancer and many other diseases.

University of Central Florida chemists, led by Professor Kevin Belfield, used near infrared light and fluorescent dye to take pictures of cells and tumors deep within tissue. The probes specifically target lysosomes, which act as cells' thermostats and waste processors and which have been linked to a variety of diseases, including types of mental illnesses and cancers.

The probes can be adapted to search for certain proteins found in tumors, which means they someday may help doctors diagnose and potentially treat tumors.

"This is a game-changer," Belfield said. "Until now, there was no real way to study lysosomes because existing techniques have severe limitations. But the probe we developed is stable, which allows for longer periods of imaging."

Current imaging probes work for only a few minutes. They cannot penetrate deep tissue, are sensitive to pH levels and have poor water solubility. Belfield's technique gets around those problems by using near infrared light. Once researchers identified the correct light frequency, they took images of lysosomes for hours.

The new approach will allow researchers to see lysosomes at work and to piece together their role in diseases such as cancer and Tay-Sachs, a genetic disorder from which children typically die by age 4.

"We've come up with something that should make a huge difference in finding answers to some very complicated conditions," Belfield said.

Belfield's findings, which include comparisons to the only two existing probes on the market today, are published in this month's Journal of the American Chemical Society, one of the most highly ranked journals in chemistry.

Belfield published three other papers this summer looking at probes that were adapted to search for proteins found in tumors. Those articles were published in Organic and Biomolecular Chemistry and the Journal of Organic Chemistry.

The National Institutes of Health's National Institute for Biomedical Imaging and Bioengineering funded the project.

Belfield's team is continuing its research with NIH funding. The UCF researchers are working with the Sanford-Burnham Institute for Medical Research on the tests required before clinical studies can begin.

UCF Stands For Opportunity --The University of Central Florida is a metropolitan research university that ranks as the 3rd largest in the nation with 56,000 students. UCF's first classes were offered in 1968. The university offers impressive academic and research environments that power the region's economic development. UCF's culture of opportunity is driven by our diversity, Orlando environment, history of entrepreneurship and our youth, relevance and energy. For more information visit http://news.ucf.edu

Zenaida Gonzalez Kotala | EurekAlert!
Further information:
http://www.ucf.edu

More articles from Life Sciences:

nachricht Repairing damaged hearts with self-healing heart cells
22.08.2017 | National University Health System

nachricht Biochemical 'fingerprints' reveal diabetes progression
22.08.2017 | Umea University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>