Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Information on the Waste-Disposal Units of Living Cells

12.01.2012
Berkeley Researchers Provide Detailed Look at Proteasome’s Regulatory Particle

Important new information on one of the most critical protein machines in living cells has been reported by a team of researchers with the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) and the University of California (UC) Berkeley.

The researchers have provided the most detailed look ever at the “regulatory particle” used by the protein machines known as proteasomes to identify and degrade proteins that have been marked for destruction. The activities controlled by this regulatory particle are critical to the quality control of cellular proteins, as well as a broad range of vital biochemical processes, including transcription, DNA repair and the immune defense system.

“Using electron microscopy and a revolutionary new system for protein expression, we have determined at a subnanometer scale the complete architecture, including the relative positions of all its protein components, of the proteasome regulatory particle,” says biophysicist Eva Nogales, the research team’s co-principal investigator. “This provides a structural basis for the ability of the proteasome to recognize and degrade unwanted proteins and thereby regulate the amount of any one type of protein that is present in the cell.”

Says the team’s other co-principal investigator and corresponding author, biochemist Andreas Martin, “While the biochemical function of many of the proteasome components have been determined, and some subnanometer structures have been identified, it was unclear before now which component goes where and which components interact with one another. Now we have a much better understanding as to how the proteasome machinery works to control cellular processes and this opens the possibility of manipulating proteasome activity for the treatment of cancer and other diseases.”

Nogales, who holds appointments with Berkeley Lab, UC Berkeley, and the Howard Hughes Medical Institute, and Martin, who holds appointments with UC Berkeley and the QB3 Institute, are the senior authors of a paper describing this work in the journal Nature. The paper is titled “Complete subunit architecture of the proteasome regulatory particle.” Other co-authors were Gabriel Lander, Eric Estrin, Mary Matyskiela and Charlene Bashore.

At any given moment, a human cell typically contains about 100,000 different proteins, with certain proteins being manufactured and others being discarded as needed for the cell’s continued prosperity. Unwanted proteins are tagged with a “kiss-of-death” label in the form of a polypeptide called “ubiquitin.” A protein marked with ubiquitin is delivered to any one of the some 30,000 proteasomes in the cell – barrel-shaped complexes which act as waste disposal units that rapidly break-down or degrade the protein. The 2004 Nobel Prize in chemistry was awarded to a trio of scientists who first described the proteasome process, but a lack of structural information has limited the scientific understanding of the mechanics behind this process.

Nogales, an expert on electron microscopy and image analysis, and Martin, who developed the new protein expression system used in this work, combined the expertise of their respective research groups to study the proteasome regulatory particle in yeast. The particle features 19 sub-units that are organized into two sub-complexes, a “lid” and a “base.” The lid contains the regulatory elements that identify the ubiquitin tag marking a protein for destruction, and the base features a hexameric ring that pulls the tagged protein inside the chamber of the proteasome barrel where it is degraded.

“The lid consists of nine non-ATPase proteins including ubiquitin receptors that accept properly tagged proteins but prevent a protein not marked for degradation from engaging with the proteasome,” Nogales says. “Since degradation is irreversible, it is critical that only ubiquitin-tagged proteins engage the proteasome. Interestingly, the ubiquitin tag has to be removed before the protein can be translocated into the proteasome’s destruction chamber, so the lid also contains de-ubiquitination enzymes that remove the tags after the protein has engaged with the proteasome.”

The proteasome regulatory particle’s base contains six distinct AAA+ ATPases that form the hetero-hexameric ring, which serves as the molecular motor of the proteasome.

“We predict that the ATPases use the energy of ATP binding and hydrolysis to exert a pulling force on engaged proteins, unfolding and translocating them through a narrow central pore and into the degradation chamber,” Martin says. “The steps in the proteasome process – from protein recognition to de-ubiquitination and degradation have to be very highly coordinated in time and space. Locating all of these components and identifying their relative orientations has been very telling about how the processes are coordinated with each other.”

Nogales credits the protein expression system developed by Martin and his research group, in which proteins are expressed and assembled in bacteria, as being critical to the success of this research.

“Until now researchers had to work with purified protein complexes from the cell, which could not be manipulated or modified in any way,” she says. “Andy Martin’s new heterologous expression system allows for the manipulation and dissection of protein functions. For our studies it was crucial to generate lid sub-complexes that had one marker at a time in each of the subunits so that we could determine the position of each protein within the lid. With this new system we generated truncations, deletions and fusion constructs that were used to localize individual subunits and delineate their boundaries within the lid.”

This research was supported by funds from UC Berkeley, Berkeley Lab, the National Institutes of Health, the Searle Scholars Program, the Damon Runyon Cancer Research Foundation, the American Cancer Society, the National Science Foundation and the Howard Hughes Medical Institute.

Lawrence Berkeley National Laboratory addresses the world’s most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab’s scientific expertise has been recognized with 13 Nobel prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy’s Office of Science. For more, visit www.lbl.gov.

Additional Information

For more information about Eva Nogales and her research group see http://cryoem.berkeley.edu/

For more information about Andreas Martin and his research group see http://mcb.berkeley.edu/labs/martin/amartin/Home.html

Lynn Yarris | EurekAlert!
Further information:
http://www.lbl.gov

More articles from Life Sciences:

nachricht At last, butterflies get a bigger, better evolutionary tree
16.02.2018 | Florida Museum of Natural History

nachricht New treatment strategies for chronic kidney disease from the animal kingdom
16.02.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>