Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Indispensable Guests: Shedding Light on Past Life

07.12.2012
Let there be light: An international consortium including a team from Marburg has analyzed a genome of algae whose cells contain the remains of foreign species that the host organisms use to generate energy by way of photosynthesis.
The hosts haven’t transferred all of their permanent guests’ genetic material into their nuclei, because genetic information could have become lost in the process, as the scientists assume. Their results appear in the current issue of the journal Nature from Thursday, 6 December 2012.

“For the first time, we have sequenced the nuclear genomes of two unicellular algae that are remarkable in their genetic and cellular complexity,” write the authors, among whom are Professor Dr. Stefan Rensing, Professor Dr. Uwe Maier, Dr. Franziska Hempel, Aikaterini Symeonidi, and Dr. Stefan Zauner from the University of Marburg. Cells contain a variety of so-called organelles – subcellular components that fulfill critical functions for the cell, such as energy conversion or photosynthesis. These organelles originated from previously discrete cells that were integrated into the cell in the distant past by the ancestors of the host organism.
Usually organelles were converted from bacteria, but not so in the case of several species of algae: They learned photosynthesis by absorbing other plant cells, including all of their existing organelles, the so-called chloroplasts. The term for this process is secondary endosymbiosis: By continuing to take advantage of the services of their new workers, the hosts can use sunlight to produce nutrients.

Structures that do not serve this purpose are usually lost in the course of evolution. In a few rare cases, however, the symbiotic organelles still contain nuclei of greatly reduced dimensions that stem from the original organism – for instance in cryptophytes and chlorarachniophytes.
Why does the nucleus remain intact in these species? In order to find out, the international research consortium first determined which sequences the four nuclear genomes of two relevant species possess. The result: Both of the residual nuclei contained only a fraction of the genes possessed by independently living related species. As the authors report, much of the remaining genetic information does not exhibit any similarity at all to that of known genes. Nevertheless, they control vitally important processes that occur in these organelles, such as translation, i.e., the conversion of genetic information into proteins.

A sizable quantity of genes evidently wandered from the organelles acquired by way of secondary endosymbiosis into the nucleus of the host. The scientists refer to the result as a “a complex mosaic of genes whose evolutionary histories do not reliably predict where their protein products function within the cell.”
Uwe Maier is a member of “LOEWE – Center for Synthetic Microbiology” of the University of Marburg. Among other things, he and his team in Marburg prepared sequencing data for the project. In addition, they identified encoded proteins and determined their location. Stefan Rensing’s research group at the Cluster of Excellence “BIOSS Centre for Biological Signalling Studies” of the University of Freiburg helped to identify the proteins that are imported into the organelles and analyzed contaminations, duplication events, and all of the proteins involved in the regulation of the transcription.
(Translation: University of Freiburg)

Original Publication: Bruce A. Curtis & al.: Algal genomes reveal evolutionary mosaicism and the fate of nucleomorphs, Nature (6.12.2012), DOI: 10.1038/nature11681
Further Information:

Professor Dr. Stefan Rensing,
Fachgebiet Zellbiologie
E-Mail: stefan.rensing@biologie.uni-marburg.de

Professor Dr. Uwe Maier,
Fachgebiet Zellbiologie und „LOEWE-Zentrum für Synthetische Mikrobiologie (SYNMIKRO)“
Tel.: 06421/28-21543
E-Mail: maier@biologie.uni-marburg.de

Johannes Scholten | idw
Further information:
http://www.uni-marburg.de

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>