Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Indispensable Guests: Shedding Light on Past Life

07.12.2012
Let there be light: An international consortium including a team from Marburg has analyzed a genome of algae whose cells contain the remains of foreign species that the host organisms use to generate energy by way of photosynthesis.
The hosts haven’t transferred all of their permanent guests’ genetic material into their nuclei, because genetic information could have become lost in the process, as the scientists assume. Their results appear in the current issue of the journal Nature from Thursday, 6 December 2012.

“For the first time, we have sequenced the nuclear genomes of two unicellular algae that are remarkable in their genetic and cellular complexity,” write the authors, among whom are Professor Dr. Stefan Rensing, Professor Dr. Uwe Maier, Dr. Franziska Hempel, Aikaterini Symeonidi, and Dr. Stefan Zauner from the University of Marburg. Cells contain a variety of so-called organelles – subcellular components that fulfill critical functions for the cell, such as energy conversion or photosynthesis. These organelles originated from previously discrete cells that were integrated into the cell in the distant past by the ancestors of the host organism.
Usually organelles were converted from bacteria, but not so in the case of several species of algae: They learned photosynthesis by absorbing other plant cells, including all of their existing organelles, the so-called chloroplasts. The term for this process is secondary endosymbiosis: By continuing to take advantage of the services of their new workers, the hosts can use sunlight to produce nutrients.

Structures that do not serve this purpose are usually lost in the course of evolution. In a few rare cases, however, the symbiotic organelles still contain nuclei of greatly reduced dimensions that stem from the original organism – for instance in cryptophytes and chlorarachniophytes.
Why does the nucleus remain intact in these species? In order to find out, the international research consortium first determined which sequences the four nuclear genomes of two relevant species possess. The result: Both of the residual nuclei contained only a fraction of the genes possessed by independently living related species. As the authors report, much of the remaining genetic information does not exhibit any similarity at all to that of known genes. Nevertheless, they control vitally important processes that occur in these organelles, such as translation, i.e., the conversion of genetic information into proteins.

A sizable quantity of genes evidently wandered from the organelles acquired by way of secondary endosymbiosis into the nucleus of the host. The scientists refer to the result as a “a complex mosaic of genes whose evolutionary histories do not reliably predict where their protein products function within the cell.”
Uwe Maier is a member of “LOEWE – Center for Synthetic Microbiology” of the University of Marburg. Among other things, he and his team in Marburg prepared sequencing data for the project. In addition, they identified encoded proteins and determined their location. Stefan Rensing’s research group at the Cluster of Excellence “BIOSS Centre for Biological Signalling Studies” of the University of Freiburg helped to identify the proteins that are imported into the organelles and analyzed contaminations, duplication events, and all of the proteins involved in the regulation of the transcription.
(Translation: University of Freiburg)

Original Publication: Bruce A. Curtis & al.: Algal genomes reveal evolutionary mosaicism and the fate of nucleomorphs, Nature (6.12.2012), DOI: 10.1038/nature11681
Further Information:

Professor Dr. Stefan Rensing,
Fachgebiet Zellbiologie
E-Mail: stefan.rensing@biologie.uni-marburg.de

Professor Dr. Uwe Maier,
Fachgebiet Zellbiologie und „LOEWE-Zentrum für Synthetische Mikrobiologie (SYNMIKRO)“
Tel.: 06421/28-21543
E-Mail: maier@biologie.uni-marburg.de

Johannes Scholten | idw
Further information:
http://www.uni-marburg.de

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>