Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

In India: A search for more effective tuberculosis drugs

02.02.2009
Rajesh Gokhale has created a compound in his lab in India that stops tuberculosis in its tracks. In a test tube, the molecule hits four of the bacterium's crucial metabolic pathways at the same time, weakening and ultimately destroying the pathogen.

The problem is that Gokhale's compound will not work in humans. Not willing to set aside seven years of work, he has been knocking on the doors of pharmaceutical companies to see if he can get any takers to help design a less toxic version.

Gokhale is pushing himself because he knows if he can design a single drug that is safe and effective, it might one day replace the costly cocktail of drugs that people with tuberculosis must currently take to cure their disease.

While a drug based on Gokhale's ideas is still years away from human testing, it offers a measure of hope that researchers may one day have more modern pharmaceutical "weapons" that can slow down the tuberculosis (TB) pathogen's relentless assault. According to the World Health Organization, TB remains one of the world's top-ten leading causes of death, killing nearly two million people each year. In Gokhale's native India, it kills roughly 1,000 people each day.

"Right now, tuberculosis patients take a cocktail of four drugs, and each inhibits a single enzyme," said Gokhale, a Howard Hughes Medical Institute international research scholar based at the National Institute of Immunology in New Delhi, India. Gokhale's group shows how they designed the molecule that targets multiple enzymes in Mycobacterium tuberculosis in the January 25, 2009, issue of Nature Chemical Biology. "Targeting several enzymes at the same time is a much more efficient approach. Theoretically, patients wouldn't have to take several drugs, they could just take one."

The multi-drug regimen is a major problem for several reasons. It requires TB patients to manage taking four drugs exactly as prescribed over six to nine months. If patients don't take the full course of the medicines, the TB bacteria may develop resistance to the drugs and become even more difficult to treat. To reduce that risk, many countries require that patients go to a clinic so a healthcare professional can watch them take the medication and ensure they are complying with their drug-treatment regimen. This is both expensive and time consuming. Gokhale said that a single drug that targets multiple pathways could save time and money by eliminating the need to take so many drugs over such a long period of time.

To create their new compound, Gokhale and his colleagues exploited an evolutionary quirk in the way Mycobacterium tuberculosis builds the lipid layer that coats its surface. Unlike other organisms, M. tuberculosis displays a suite of complex lipids on its outer membrane. Some scientists have suggested that these long lipid molecules contribute to the bacteria's ability to maintain long-term infections by confusing the host's immune system.

"The complex lipids displayed by Mycobacterium tuberculosis are a big factor in its pathogenicity and virulence," Gokhale said. "But what was not known is how they were made by the organism."

For the past seven years, Gokhale and his colleagues have studied the intricate metabolic pathways that Mycobacterium tuberculosis employs to build complex lipids. He has come to regard the TB bacteria as a "chemical factory" where complex machines, in the form of enzymes, work together to link simple building blocks—called fatty acids—into long chains. In 2004, Gokhale and his colleagues found a new class of enzymes that are critical for an early phase of the lipid-building process. Called fatty acyl-AMP ligases (FAALs), these enzymes tweak fatty acids so that a second class of enzymes can string them together like bulbs on a strand of Christmas lights.

In their most recent study, Gokhale and his colleagues show that particular molecules that inhibit FAALs also inhibit other, similarly-shaped enzymes involved in the assembly line that is lipid use and degradation. These enzymes are required during the life cycle of the TB bacterium in the humans. "A major challenge has been to develop drugs that could target different stages disease," Gokhale said. "Since this single molecule could potentially grind the assembly line to a halt at different stages of infection, this approach provides tremendous opportunity to develop unique antituberculosis drugs."

Gokhale has collaborated with a colleague at a colleague at the Centre for Cellular and Molecular Biology in Hyderabad, Rajan Sankaranarayanan, to examine the three-dimensional structure of the molecule. This will give his group the opportunity to modify the molecule or develop a new one that is less toxic and better targets the TB bacteria. Gokhale said that the drug industry is finally waking up to the idea that a single drug can work on multiple metabolic pathways, rather than making a molecule that acts in a very specific way on a single target.

"The 'one disease–one drug–one target' paradigm that has dominated thinking in the pharmaceutical industry for the past few decades is now being increasingly challenged by the discovery of compounds that bind to more than one target," Gokhale said. "That's the direction we're heading in trying to develop a single chemical entity that could simultaneously target a family of enzymes in TB."

Andrea Widener | EurekAlert!
Further information:
http://www.hhmi.org

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>