Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

In India: A search for more effective tuberculosis drugs

02.02.2009
Rajesh Gokhale has created a compound in his lab in India that stops tuberculosis in its tracks. In a test tube, the molecule hits four of the bacterium's crucial metabolic pathways at the same time, weakening and ultimately destroying the pathogen.

The problem is that Gokhale's compound will not work in humans. Not willing to set aside seven years of work, he has been knocking on the doors of pharmaceutical companies to see if he can get any takers to help design a less toxic version.

Gokhale is pushing himself because he knows if he can design a single drug that is safe and effective, it might one day replace the costly cocktail of drugs that people with tuberculosis must currently take to cure their disease.

While a drug based on Gokhale's ideas is still years away from human testing, it offers a measure of hope that researchers may one day have more modern pharmaceutical "weapons" that can slow down the tuberculosis (TB) pathogen's relentless assault. According to the World Health Organization, TB remains one of the world's top-ten leading causes of death, killing nearly two million people each year. In Gokhale's native India, it kills roughly 1,000 people each day.

"Right now, tuberculosis patients take a cocktail of four drugs, and each inhibits a single enzyme," said Gokhale, a Howard Hughes Medical Institute international research scholar based at the National Institute of Immunology in New Delhi, India. Gokhale's group shows how they designed the molecule that targets multiple enzymes in Mycobacterium tuberculosis in the January 25, 2009, issue of Nature Chemical Biology. "Targeting several enzymes at the same time is a much more efficient approach. Theoretically, patients wouldn't have to take several drugs, they could just take one."

The multi-drug regimen is a major problem for several reasons. It requires TB patients to manage taking four drugs exactly as prescribed over six to nine months. If patients don't take the full course of the medicines, the TB bacteria may develop resistance to the drugs and become even more difficult to treat. To reduce that risk, many countries require that patients go to a clinic so a healthcare professional can watch them take the medication and ensure they are complying with their drug-treatment regimen. This is both expensive and time consuming. Gokhale said that a single drug that targets multiple pathways could save time and money by eliminating the need to take so many drugs over such a long period of time.

To create their new compound, Gokhale and his colleagues exploited an evolutionary quirk in the way Mycobacterium tuberculosis builds the lipid layer that coats its surface. Unlike other organisms, M. tuberculosis displays a suite of complex lipids on its outer membrane. Some scientists have suggested that these long lipid molecules contribute to the bacteria's ability to maintain long-term infections by confusing the host's immune system.

"The complex lipids displayed by Mycobacterium tuberculosis are a big factor in its pathogenicity and virulence," Gokhale said. "But what was not known is how they were made by the organism."

For the past seven years, Gokhale and his colleagues have studied the intricate metabolic pathways that Mycobacterium tuberculosis employs to build complex lipids. He has come to regard the TB bacteria as a "chemical factory" where complex machines, in the form of enzymes, work together to link simple building blocks—called fatty acids—into long chains. In 2004, Gokhale and his colleagues found a new class of enzymes that are critical for an early phase of the lipid-building process. Called fatty acyl-AMP ligases (FAALs), these enzymes tweak fatty acids so that a second class of enzymes can string them together like bulbs on a strand of Christmas lights.

In their most recent study, Gokhale and his colleagues show that particular molecules that inhibit FAALs also inhibit other, similarly-shaped enzymes involved in the assembly line that is lipid use and degradation. These enzymes are required during the life cycle of the TB bacterium in the humans. "A major challenge has been to develop drugs that could target different stages disease," Gokhale said. "Since this single molecule could potentially grind the assembly line to a halt at different stages of infection, this approach provides tremendous opportunity to develop unique antituberculosis drugs."

Gokhale has collaborated with a colleague at a colleague at the Centre for Cellular and Molecular Biology in Hyderabad, Rajan Sankaranarayanan, to examine the three-dimensional structure of the molecule. This will give his group the opportunity to modify the molecule or develop a new one that is less toxic and better targets the TB bacteria. Gokhale said that the drug industry is finally waking up to the idea that a single drug can work on multiple metabolic pathways, rather than making a molecule that acts in a very specific way on a single target.

"The 'one disease–one drug–one target' paradigm that has dominated thinking in the pharmaceutical industry for the past few decades is now being increasingly challenged by the discovery of compounds that bind to more than one target," Gokhale said. "That's the direction we're heading in trying to develop a single chemical entity that could simultaneously target a family of enzymes in TB."

Andrea Widener | EurekAlert!
Further information:
http://www.hhmi.org

More articles from Life Sciences:

nachricht Study shines light on brain cells that coordinate movement
26.06.2017 | University of Washington Health Sciences/UW Medicine

nachricht New insight into a central biological dogma on ion transport
26.06.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>