Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How Increased UV Exposure Impacts Plants

10.03.2009
Studying the effects of ultraviolet radiation on bryophytes can help scientists understand its impacts on crops, ecological systems, and humans.

As the first plant life to emerge from the water and develop on dry earth, bryophytes offer a unique opportunity for researchers to understand the development of protections against ultraviolet radiation.

The three varieties of bryophites (liverworts, hornworts, and mosses) have long been utilized as indicators of the health of local environments, but with the recent effects of climate change and the depleting ozone layer, these plants present an important measure in their ability to withstand increased exposure to UVR.

Recently, a new experiment studying bryophytes was applied at a large-enrollment undergraduate biology course at Minnesota State University. The laboratory exercise introduced students to the impacts of ultraviolet radiation on plant populations using a readily accessible and easily propagated liverwort.

The article detailing the effectiveness of the experiment, authored by Linda Fuselier and Nicole True, was published in the Journal of Natural Resources and Life Sciences Education.

The lab exercise focused on ultraviolet radiation impacts on liverwort asexual propagules, and students were required to formulate and test a hypothesis based on background reading related to impacts of ultraviolet radiation on ecological systems and humans. The experiment was also designed to improve student’s computational skills, expand their repertoire of statistical techniques, and provide an introduction to writing a full, formal lab report in the form of a “brief communication” for a scientific journal.

The researchers believe that studying the effects of ultraviolet radiation on bryophytes can help scientists understand its impacts on crops and other natural plant communities. Because plants to not have the same ability to move out of direct harm from ultraviolet radiation, they have developed a variety of systems to reduce its impacts through evolution. As bryophytes were the first plants to emerge from aquatic life, they represent a key link in this evolution.

As bryophytes are among the least understood plant life despite their abundance, another of the experiment’s goals was to familiarize students with their history of development and their functions within an environment. In addition, students also gained greater experience with experimental methods and reporting statistics in lab reports. A majority of students agreed that these goals were met.

The full article is available for no charge for 30 days following the date of this summary. View the abstract at http://www.jnrlse.org/pdf/2009/E08-0033.pdf. After 30 days it will be available at the Journal of Natural Resources and Life Sciences Education website, www.jnrlse.org. Go to http://www.jnrlse.org/issues/ (Click on the Year, "View Article List," and scroll down to article abstract).

Today's educators are looking to the Journal of Natural Resources and Life Sciences Education, http://www.jnrlse.org, for the latest teaching techniques in the life sciences, natural resources, and agriculture. The journal is continuously updated online during the year and one hard copy is published in December by the American Society of Agronomy.

The American Society of Agronomy (ASA) www.agronomy.org, is a scientific society helping its 8,000+ members advance the disciplines and practices of agronomy by supporting professional growth and science policy initiatives, and by providing quality, research-based publications and a variety of member services.

Sara Uttech | EurekAlert!
Further information:
http://www.agronomy.org

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>