Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Incorrectly Folded Fibers

26.01.2010
Flash frozen under the electron microscope: examining the mechanical properties of Alzheimer’s amyloid fibrils

Alzheimer’s disease, Parkinson’s disease, type-II diabetes, and prion diseases like BSE all involve the deposition of amyloid fibrils in tissues and organs. These are fibrous clumps of incorrectly folded proteins; their exact structures and their roles in pathological processes are not yet completely understood.

By using electron microscopic images of flash frozen samples, researchers have now been able to examine the exact structure of Alzheimer’s amyloid fibrils and to assess their mechanical properties. As the team reports in the journal Angewandte Chemie, the fibrils are very stiff—one of the underlying causes of their pathogenicity.

Because amyloid fibrils are very difficult to analyze with traditional biophysical techniques, Marcus Fändrich (Max Planck Unit for Enzymology of Protein Folding, Halle/Saale, Germany), Carsten Sachse (MRC Laboratory of Molecular Biology, Cambridge, UK), and Nikolaus Grigorieff (Brandeis University, Waltham, USA) were forced to take another approach: They examined Alzheimer’s amyloid fibrils by electron cryomicroscopy. “These experiments allowed us to examine the structure of the fibrils at a previously unattainable resolution,” explains Fändrich.

The fibrils appear in twisted bands about 20 nm wide and are often bent in the raw electron microscopic images. “These bent fibrils are a snapshot of the fibrils in solution,” says Fändrich. “We use the degree of bending and twisting to calculate how stiff the fibrils are.” This revealed that the Alzheimer’s amyloid fibrils are relatively rigid structures. “The uncontrolled formation of such stiff fibrils is presumably critical for the pathogenicity of amyloid fibrils,” reports Fändrich. “In many amyloid diseases, the fibrils are preferentially deposited in tissues that are normally contractile or elastic, like the heart muscle or the walls of blood vessels. Medical findings indicate that the fibrils somewhat stiffen these tissues.”

“In addition, our data may help to better evaluate the possible uses of amyloid fibers as novel biotechnological agents,” reports Fändrich. Based on their material properties and ease of modification, amyloid fibers are potentially interesting as novel building materials.

Author: Marcus Fändrich, Max Planck Research Unit for Enzymology of Protein Folding, Halle (Germany), http://www.enzyme-halle.mpg.de/amyloid/staff.htm

Title: Nanoscale Flexibility Parameters of Alzheimer Amyloid Fibrils Determined by Electron Cryo-Microscopy

Angewandte Chemie International Edition 2010, 49, No. 7, Permalink: http://dx.doi.org/10.1002/anie.200904781

Marcus Fändrich | Angewandte Chemie
Further information:
http://pressroom.angewandte.org
http://www.enzyme-halle.mpg.de/amyloid/staff.htm

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>