Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Incorrectly Folded Fibers

26.01.2010
Flash frozen under the electron microscope: examining the mechanical properties of Alzheimer’s amyloid fibrils

Alzheimer’s disease, Parkinson’s disease, type-II diabetes, and prion diseases like BSE all involve the deposition of amyloid fibrils in tissues and organs. These are fibrous clumps of incorrectly folded proteins; their exact structures and their roles in pathological processes are not yet completely understood.

By using electron microscopic images of flash frozen samples, researchers have now been able to examine the exact structure of Alzheimer’s amyloid fibrils and to assess their mechanical properties. As the team reports in the journal Angewandte Chemie, the fibrils are very stiff—one of the underlying causes of their pathogenicity.

Because amyloid fibrils are very difficult to analyze with traditional biophysical techniques, Marcus Fändrich (Max Planck Unit for Enzymology of Protein Folding, Halle/Saale, Germany), Carsten Sachse (MRC Laboratory of Molecular Biology, Cambridge, UK), and Nikolaus Grigorieff (Brandeis University, Waltham, USA) were forced to take another approach: They examined Alzheimer’s amyloid fibrils by electron cryomicroscopy. “These experiments allowed us to examine the structure of the fibrils at a previously unattainable resolution,” explains Fändrich.

The fibrils appear in twisted bands about 20 nm wide and are often bent in the raw electron microscopic images. “These bent fibrils are a snapshot of the fibrils in solution,” says Fändrich. “We use the degree of bending and twisting to calculate how stiff the fibrils are.” This revealed that the Alzheimer’s amyloid fibrils are relatively rigid structures. “The uncontrolled formation of such stiff fibrils is presumably critical for the pathogenicity of amyloid fibrils,” reports Fändrich. “In many amyloid diseases, the fibrils are preferentially deposited in tissues that are normally contractile or elastic, like the heart muscle or the walls of blood vessels. Medical findings indicate that the fibrils somewhat stiffen these tissues.”

“In addition, our data may help to better evaluate the possible uses of amyloid fibers as novel biotechnological agents,” reports Fändrich. Based on their material properties and ease of modification, amyloid fibers are potentially interesting as novel building materials.

Author: Marcus Fändrich, Max Planck Research Unit for Enzymology of Protein Folding, Halle (Germany), http://www.enzyme-halle.mpg.de/amyloid/staff.htm

Title: Nanoscale Flexibility Parameters of Alzheimer Amyloid Fibrils Determined by Electron Cryo-Microscopy

Angewandte Chemie International Edition 2010, 49, No. 7, Permalink: http://dx.doi.org/10.1002/anie.200904781

Marcus Fändrich | Angewandte Chemie
Further information:
http://pressroom.angewandte.org
http://www.enzyme-halle.mpg.de/amyloid/staff.htm

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>