Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Improving pore 'vision'

The formation of nuclear pores in dividing human cells is being illuminated by new visualization techniques

A team led by Naoko Imamoto of the RIKEN Advanced Science Institute in Wako has uncovered processes governing the formation of functionally important structures called nuclear pore complexes (NPCs) in dividing human cells1.

Mitosis, the process of mammalian cell division, is followed by a period called ‘interphase’ during which the volume of the cell nucleus almost doubles; as does the number of NPCs on the nuclear envelope separating the ‘nucleoplasm’ from the cytoplasm—the rest of the cell’s contents.

Innumerable molecules shuttle between the nucleus and cytoplasm through pores formed by NPCs, which are large octagonal structures composed of multiple copies of around 30 different proteins called ‘nucleoporins’ (Nups). NPCs form at the end of mitosis, when previously disassembled NPCs are reassembled, and during interphase when their number increases in preparation for another round of cell division.

“We wished to understand how NPCs form on the nuclear envelope of interphase cells, which is much less understood than post-mitotic NPC formation initiating on mitotic chromosomes,” says Imamoto.

The researchers began by developing fluorescence-based NPC visualization methods. Their first approach involved using a laser to photobleach certain nuclear surface areas of early human interphase cells expressing fluorescently tagged ‘scaffold’ Nups. This allowed them to monitor the formation of new NPCs, which appeared as bright dots in the bleached areas.

A second method involved monitoring NPC formation in fused cells called ‘heterokaryons’. “Our heterokaryon method allows quantitative analysis of many nuclei without risking laser damage,” explains Imamoto.

By combining these visualization techniques with cell engineering experiments they found that the formation of NPCs in human interphase cells is promoted by known cell-cycle regulators called cyclin-dependent protein kinases (Cdks).

Cdk inhibition experiments further revealed that CdK1 and CdK2, in particular, govern NPC formation during interphase, but not in post-mitotic NPC assembly, suggesting that different regulatory mechanisms are at play. Interestingly, Cdks also govern the behavior of nuclear envelope proteins, suggesting an as yet unknown mechanistic connection between NPC formation and membrane dynamics.

Cdks appear to act early in NPC formation because their inhibition suppressed the generation of small ‘nascent’ pores observed on early interphase nuclear envelopes using scanning electron microscopy.

“We believe that these ‘nascent pores’ are probably immature nuclear pores, although this needs to be confirmed,” says Imamoto.

Cdk inhibition did not greatly affect nuclear growth, suggesting that its mechanism of regulation is distinct from that of NPC formation, which is something that future research must also address.

The corresponding author for this highlight is based at the Cellular Dynamics Laboratory, RIKEN Advanced Science Institute

Journal information

1. Maeshima, K., Iino, H., Hihara, S., Funakoshi, T., Watanabe, A., Nishimura, M., Nakatomi, R., Yahata, K., Imamoto, F., Hashikawa, T., Yokota, H. & Imamoto, N. Nuclear pore formation but not nuclear growth is governed by cyclin-dependent kinases (Cdks) during interphase. Nature Structural & Molecular Biology 17, 1065–1071 (2010).

gro-pr | Research asia research news
Further information:

More articles from Life Sciences:

nachricht ‘Farming’ bacteria to boost growth in the oceans
24.10.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht Calcium Induces Chronic Lung Infections
24.10.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>