Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Improvement in prediction of blood clots in cancer patients

10.09.2010
For cancer patients, who have an increased risk of developing venous thromboembolism (VTE) due to a hyperactive blood coagulation system, there is now an enhanced risk model to predict their chance of developing blood clots, according to a recent study published today in Blood, the journal of the American Society of Hematology.

VTE, the formation of blood clots in the veins, develops in up to 20 percent of cancer patients and is one of the leading causes of death among this patient population. Patients with hematologic malignancies (blood cancers), particularly those with lymphoma and multiple myeloma, have relatively high rates of VTE—results from this study found that 7.2 percent of lymphoma patients and 7.4 percent of the total study population developed VTE, compared to an estimated general population incidence rate of .001 percent.1

"Because the risk of VTE is not equal in all cancer patients and anticoagulation in cancer patients results in a higher risk of bleeding complications, categorizing cancer patients according to their VTE risk is important," said Ingrid Pabinger, MD, professor at the Medical University of Vienna and lead author of the study. Patients with high risk of VTE may benefit from routine thrombophrophylaxis, preventive treatment for blood clotting, while low-risk patients tend to have a higher bleeding risk and may not be the best candidates for routine anticoagulation treatments.

Although there is a current risk prediction model for VTE in cancer patients, which includes factors such as site of cancer, body mass index, platelet and leukocyte counts, and hemoglobin level—all known to increase the risk of cancer-associated VTE—the new model also incorporates two new biomarkers, soluble P-selectin (sP-selectin) and D-dimer, to further stratify patients into high- and low-risk groups. sP-selectin is a cell adhesion molecule that promotes blood clot formation and D-dimer is a protein found in the blood that is used to detect abnormal blood clot formation and breakdown. Both have been previously identified as predictive biomarkers for cancer-associated VTE and their addition into the risk prediction model improves the accuracy of the classification of the patients into different risk categories. According to this new risk scoring model, about one-third (35 percent) of cancer patients in the highest risk category developed VTE during the study, as opposed to only one percent of patients in the lowest risk category.

In this study, researchers examined 819 cancer patients enrolled in the Vienna Cancer and Thrombosis Study (CATS), an ongoing prospective observational study performed at the Medical University of Vienna, between October 2003 and December 2008. Cancer types included: brain, breast, lung, stomach, colorectal, pancreatic, kidney, prostate, and hematologic malignancies such as myeloma and lymphoma.

"Our expanded model demonstrates that cancer patients at a very high risk of VTE can be defined more precisely," said Cihan Ay, MD, hematology fellow at the Clinical Division of Hematology and Hemostaseology at the Medical University of Vienna and co-author of the study. "This new model can help clinicians tailor their anticoagulant therapy and improve blood clotting prevention, which will maximize the clinical benefit and cost-effectiveness of disease prevention and minimize the risk of bleeding complications."

[1] Office of the Surgeon General. Surgeon General's Call to Action to Prevent Deep Vein Thrombosis and Pulmonary Embolism. Available at: http://www.surgeongeneral.gov/topics/deepvein/

The American Society of Hematology is the world's largest professional society concerned with the causes and treatment of blood disorders. Its mission is to further the understanding, diagnosis, treatment, and prevention of disorders affecting blood, bone marrow, and the immunologic, hemostatic, and vascular systems by promoting research, clinical care, education, training, and advocacy in hematology. ASH provides Blood: The Vital Connection, a credible online resource addressing bleeding and clotting disorders, anemia, and cancer. The official journal of ASH is Blood, the most cited peer-reviewed publication in the field, which is available weekly in print and online.

Lindsey Love | EurekAlert!
Further information:
http://www.hematology.org

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>