Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Improved memory thanks to irregular sleep-wake patterns

07.08.2015

Enhanced brain activity and irregular sleep cycles improve long-term memory in mice

If you‘ve had a good night’s sleep, you are mentally more alert and your memory works more reliably. During sleep, a part of our forebrain called the prefrontal cortex remains active. It ensures that memories and learned information are transferred to our long-term memory.

Researchers from the Max Planck Institute for Experimental Medicine in Göttingen and Ludwig Maximilian University in Munich have now decoupled the production of growth factor IGF2 from the sleep-wake rhythm and found that it improved long-term memory in mice. This could also have been due to a disturbed sleep-wake rhythm. However, older mice exhibited abnormal behaviour.

High levels of IGF2 and a permanently disrupted sleep rhythm evidently damage the brain over the long term. This finding is medically significant because IGF2 is a candidate substance for improving memory impairment in Alzheimer patients.

Much of what we learn during the day is stored temporarily in the hippocampus. Later, during the transition from the waking to the sleep phase, the memories are consolidated. During sleep, memory traces are transferred to other brain regions for permanent storage. Sleep therefore plays a key role in how memories are moved from short-term to long-term memory.

Scientists have identified several mechanisms that control memory formation and regulate sleep-wake cycles, but they still do not know how the two processes interact at the molecular level. “We wanted to find out how sleep-wake regulation affects memory consolidation,” says Ali Shahmoradi from the Max Planck Institute of Experimental Medicine.

The research group tracked down the effect of a specific molecule: insulin-like growth factor 2 (IGF2). “The polypeptide evidently accelerates the consolidation of declarative memory, which is memory that can be consciously recalled. Mice with high IGF2 levels in the cerebral cortex learn faster,” says Moritz Rossner, who led the study at the Max Planck Institute in Göttingen.

The researchers studied genetically modified mice in which the sleep-wake rhythm was disturbed and normal circadian regulation of IGF2 in the cerebral cortex was switched off. This means that growth factor IGF2 and its effects were no longer linked to the sleep-wake rhythm. Moreover, production of the polypeptide was greatly increased. The mice therefore not only had a better memory than normal mice, but were also mentally fitter. However, they often had to take a nap during the activity phase in order to regenerate.

Neuroscientists believe that IGF2 improves mental performance, and it is a candidate substance for treating Alzheimer patients. The Max Planck researchers discovered in their study, however, that IGF2 causes long-term damage to the brain. The mice not only exhibited improved long-term memory but also abnormal behaviour patterns. For example, they were more nervous and anxious. And the enhanced memory performance itself proved short-lived. It declined drastically in older mice. Rossner therefore cautions: “The use of IGF2 in the treatment of Alzheimer’s disease needs to be critically examined. Our study suggests that a persistently high concentration of the substance can harm the brain.”


Contact

Prof. Moritz Rossner
Max Planck Institute for Experimental Medicine, Göttingen
Phone: +49 551 3899781

Fax: +49 551 3899758

Email: rossner@em.mpg.de


Dr Ali Shahmoradi
Stanford University
Email: shahmoradi@stanford.edu


Original publication
Ali Shahmoradi, Konstantin Radyushkin, and Moritz J. Rossner

Enhanced memory consolidation in mice lacking the circadian modulators Sharp1 and -2 caused by elevated Igf2 signaling in the cortex

PNAS, 22 June 2015

Paul C. Baier, Magdalena M. Brzózka, Ali Shahmoradi , Lisa Reinecke, Cristina Kroos, Sven P. Wichert, Henrik Oster, Michael C. Wehr, Reshma Taneja, Johannes Hirrlinger, Moritz J. Rossner

Mice lacking the circadian modulators SHARP1 and SHARP2 display altered sleep and mixed state endophenotypes of psychiatric disorders

PLoS One, 23 October 2014

Prof. Moritz Rossner | Max Planck Institute for Experimental Medicine, Göttingen
Further information:
http://www.mpg.de/9344646/memory-sleep-patterns

More articles from Life Sciences:

nachricht Programming cells with computer-like logic
27.07.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht Identified the component that allows a lethal bacteria to spread resistance to antibiotics
27.07.2017 | Institute for Research in Biomedicine (IRB Barcelona)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>