Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Improved memory thanks to irregular sleep-wake patterns

07.08.2015

Enhanced brain activity and irregular sleep cycles improve long-term memory in mice

If you‘ve had a good night’s sleep, you are mentally more alert and your memory works more reliably. During sleep, a part of our forebrain called the prefrontal cortex remains active. It ensures that memories and learned information are transferred to our long-term memory.

Researchers from the Max Planck Institute for Experimental Medicine in Göttingen and Ludwig Maximilian University in Munich have now decoupled the production of growth factor IGF2 from the sleep-wake rhythm and found that it improved long-term memory in mice. This could also have been due to a disturbed sleep-wake rhythm. However, older mice exhibited abnormal behaviour.

High levels of IGF2 and a permanently disrupted sleep rhythm evidently damage the brain over the long term. This finding is medically significant because IGF2 is a candidate substance for improving memory impairment in Alzheimer patients.

Much of what we learn during the day is stored temporarily in the hippocampus. Later, during the transition from the waking to the sleep phase, the memories are consolidated. During sleep, memory traces are transferred to other brain regions for permanent storage. Sleep therefore plays a key role in how memories are moved from short-term to long-term memory.

Scientists have identified several mechanisms that control memory formation and regulate sleep-wake cycles, but they still do not know how the two processes interact at the molecular level. “We wanted to find out how sleep-wake regulation affects memory consolidation,” says Ali Shahmoradi from the Max Planck Institute of Experimental Medicine.

The research group tracked down the effect of a specific molecule: insulin-like growth factor 2 (IGF2). “The polypeptide evidently accelerates the consolidation of declarative memory, which is memory that can be consciously recalled. Mice with high IGF2 levels in the cerebral cortex learn faster,” says Moritz Rossner, who led the study at the Max Planck Institute in Göttingen.

The researchers studied genetically modified mice in which the sleep-wake rhythm was disturbed and normal circadian regulation of IGF2 in the cerebral cortex was switched off. This means that growth factor IGF2 and its effects were no longer linked to the sleep-wake rhythm. Moreover, production of the polypeptide was greatly increased. The mice therefore not only had a better memory than normal mice, but were also mentally fitter. However, they often had to take a nap during the activity phase in order to regenerate.

Neuroscientists believe that IGF2 improves mental performance, and it is a candidate substance for treating Alzheimer patients. The Max Planck researchers discovered in their study, however, that IGF2 causes long-term damage to the brain. The mice not only exhibited improved long-term memory but also abnormal behaviour patterns. For example, they were more nervous and anxious. And the enhanced memory performance itself proved short-lived. It declined drastically in older mice. Rossner therefore cautions: “The use of IGF2 in the treatment of Alzheimer’s disease needs to be critically examined. Our study suggests that a persistently high concentration of the substance can harm the brain.”


Contact

Prof. Moritz Rossner
Max Planck Institute for Experimental Medicine, Göttingen
Phone: +49 551 3899781

Fax: +49 551 3899758

Email: rossner@em.mpg.de


Dr Ali Shahmoradi
Stanford University
Email: shahmoradi@stanford.edu


Original publication
Ali Shahmoradi, Konstantin Radyushkin, and Moritz J. Rossner

Enhanced memory consolidation in mice lacking the circadian modulators Sharp1 and -2 caused by elevated Igf2 signaling in the cortex

PNAS, 22 June 2015

Paul C. Baier, Magdalena M. Brzózka, Ali Shahmoradi , Lisa Reinecke, Cristina Kroos, Sven P. Wichert, Henrik Oster, Michael C. Wehr, Reshma Taneja, Johannes Hirrlinger, Moritz J. Rossner

Mice lacking the circadian modulators SHARP1 and SHARP2 display altered sleep and mixed state endophenotypes of psychiatric disorders

PLoS One, 23 October 2014

Prof. Moritz Rossner | Max Planck Institute for Experimental Medicine, Göttingen
Further information:
http://www.mpg.de/9344646/memory-sleep-patterns

More articles from Life Sciences:

nachricht Cells communicate in a dynamic code
19.02.2018 | California Institute of Technology

nachricht Studying mitosis' structure to understand the inside of cancer cells
19.02.2018 | Biophysical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>