Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Improved memory thanks to irregular sleep-wake patterns

07.08.2015

Enhanced brain activity and irregular sleep cycles improve long-term memory in mice

If you‘ve had a good night’s sleep, you are mentally more alert and your memory works more reliably. During sleep, a part of our forebrain called the prefrontal cortex remains active. It ensures that memories and learned information are transferred to our long-term memory.

Researchers from the Max Planck Institute for Experimental Medicine in Göttingen and Ludwig Maximilian University in Munich have now decoupled the production of growth factor IGF2 from the sleep-wake rhythm and found that it improved long-term memory in mice. This could also have been due to a disturbed sleep-wake rhythm. However, older mice exhibited abnormal behaviour.

High levels of IGF2 and a permanently disrupted sleep rhythm evidently damage the brain over the long term. This finding is medically significant because IGF2 is a candidate substance for improving memory impairment in Alzheimer patients.

Much of what we learn during the day is stored temporarily in the hippocampus. Later, during the transition from the waking to the sleep phase, the memories are consolidated. During sleep, memory traces are transferred to other brain regions for permanent storage. Sleep therefore plays a key role in how memories are moved from short-term to long-term memory.

Scientists have identified several mechanisms that control memory formation and regulate sleep-wake cycles, but they still do not know how the two processes interact at the molecular level. “We wanted to find out how sleep-wake regulation affects memory consolidation,” says Ali Shahmoradi from the Max Planck Institute of Experimental Medicine.

The research group tracked down the effect of a specific molecule: insulin-like growth factor 2 (IGF2). “The polypeptide evidently accelerates the consolidation of declarative memory, which is memory that can be consciously recalled. Mice with high IGF2 levels in the cerebral cortex learn faster,” says Moritz Rossner, who led the study at the Max Planck Institute in Göttingen.

The researchers studied genetically modified mice in which the sleep-wake rhythm was disturbed and normal circadian regulation of IGF2 in the cerebral cortex was switched off. This means that growth factor IGF2 and its effects were no longer linked to the sleep-wake rhythm. Moreover, production of the polypeptide was greatly increased. The mice therefore not only had a better memory than normal mice, but were also mentally fitter. However, they often had to take a nap during the activity phase in order to regenerate.

Neuroscientists believe that IGF2 improves mental performance, and it is a candidate substance for treating Alzheimer patients. The Max Planck researchers discovered in their study, however, that IGF2 causes long-term damage to the brain. The mice not only exhibited improved long-term memory but also abnormal behaviour patterns. For example, they were more nervous and anxious. And the enhanced memory performance itself proved short-lived. It declined drastically in older mice. Rossner therefore cautions: “The use of IGF2 in the treatment of Alzheimer’s disease needs to be critically examined. Our study suggests that a persistently high concentration of the substance can harm the brain.”


Contact

Prof. Moritz Rossner
Max Planck Institute for Experimental Medicine, Göttingen
Phone: +49 551 3899781

Fax: +49 551 3899758

Email: rossner@em.mpg.de


Dr Ali Shahmoradi
Stanford University
Email: shahmoradi@stanford.edu


Original publication
Ali Shahmoradi, Konstantin Radyushkin, and Moritz J. Rossner

Enhanced memory consolidation in mice lacking the circadian modulators Sharp1 and -2 caused by elevated Igf2 signaling in the cortex

PNAS, 22 June 2015

Paul C. Baier, Magdalena M. Brzózka, Ali Shahmoradi , Lisa Reinecke, Cristina Kroos, Sven P. Wichert, Henrik Oster, Michael C. Wehr, Reshma Taneja, Johannes Hirrlinger, Moritz J. Rossner

Mice lacking the circadian modulators SHARP1 and SHARP2 display altered sleep and mixed state endophenotypes of psychiatric disorders

PLoS One, 23 October 2014

Prof. Moritz Rossner | Max Planck Institute for Experimental Medicine, Göttingen
Further information:
http://www.mpg.de/9344646/memory-sleep-patterns

More articles from Life Sciences:

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

NASA examines Peru's deadly rainfall

24.03.2017 | Earth Sciences

What does congenital Zika syndrome look like?

24.03.2017 | Health and Medicine

Steep rise of the Bernese Alps

24.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>