Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Impaired brain connections traced to schizophrenia mutation

01.04.2010
Like patients, engineered mice falter at working memory tasks

The strongest known recurrent genetic cause of schizophrenia impairs communications between the brain's decision-making and memory hubs, resulting in working memory deficits, according to a study in mice.

"For the first time, we have a powerful animal model that shows us how genetics affects brain circuitry, at the level of single neurons, to produce a learning and memory deficit linked to schizophrenia," explained Thomas R. Insel, M.D., director of the National Institute of Mental Health (NIMH), part of the National Institutes of Health. "This new research tool holds promise for ultimately unraveling the underlying anatomical connections and specific genes involved."

NIMH grantees Joshua Gordon, M.D., Ph.D., Joseph Gogos, M.D., Ph.D., Maria Karayiorgou, M.D., and Columbia University colleagues, report on their discovery in genetically engineered mice in the April 1, 2010 issue of the journal Nature.

"Our findings pinpoint a specific circuit and mechanism by which a mutation produces a core feature of the disorder," said Gordon, who led the research.

Researchers have suspected such a brain connectivity disturbance in schizophrenia for more than a century, and the NIH has launched a new initiative on the brain's functional circuitry, or connectome. Although the disorder is thought to be 70 percent heritable, its genetics are dauntingly complex, except in certain rare cases, such as those traced to the mutation in question.

Prior to this study, neuroimaging studies in schizophrenia patients had found abnormal connections between the brain's prefrontal cortex, the executive hub, and the hippocampus, the memory hub, linked to impaired working memory. It was also known that a mutation in the suspect site on chromosome 22, called 22q11.2, boosts schizophrenia risk 30-fold and also causes other abnormalities). Although accounting for only a small portion of cases, this tiny missing section of genetic material, called a microdeletion, has repeatedly turned up in genetic studies of schizophrenia and is an indisputable risk factor for the illness.

Still, the mutation's link to the disturbed connectivity and working memory deficit eluded detection until now.

To explore the mutation's effects on brain circuitry, Gogos, Karayiorgou and colleagues engineered a line of mice expressing the same missing segment of genetic material as the patients. Strikingly, like their human counterparts with schizophrenia, these animals turned out to have difficulty with working memory tasks – holding information in mind from moment to moment.

Successful performance of such tasks depends on good connections in a circuit linking the prefrontal cortex and the hippocampus. To measure such functional connections, Gordon and colleagues monitored signals emitted by single neurons implanted in the two distant brain structures while mice performed a working memory task in a T-maze (see below).

The more in-sync the neurons from the two areas fired, the better the functional connections between the two structures – and the better the mice performed the task. Moreover, the better the synchrony to start with, the quicker the animals learned the task. The more synchrony improved, the better they performed.

As suspected, the mice with the chromosome 22 mutation faltered on all counts -- showing much worse synchrony, learning and performance levels than control mice.

"Our results extend beyond those in patients by showing how an undeniable genetic risk factor for schizophrenia can disrupt connectivity at the level of single neurons," explained Gordon.

The researchers plan to follow up with studies into how the mutation affects brain anatomical and molecular connections and the workings of affected genes.

The research was also funded by the Simons Foundation.

Reference:

Impaired hippocampal-prefrontal synchrony in a genetic mouse model of schizophrenia. Sigurdsson T, Stark KL, Karayiorgou M, Gogos JA, Gordon JA. Nature. 2010 April 1.

Background:

http://www.nimh.nih.gov/health/topics/schizophrenia/index.shtml

http://www.nimh.nih.gov/about/director/2010/tracing-the-brains-connections.shtml

http://www.nimh.nih.gov/science-news/2009/schizophrenia-and-bipolar-disorder-share-genetic-roots.shtml

http://www.ncbi.nlm.nih.gov/pubmed/15809405

http://www.nimh.nih.gov/science-news/2005/teens-with-deletion-syndrome-confirm-genes-role-in-psychosis.shtml

http://www.genome.gov/25521139

http://www.nimh.nih.gov/science-news/2008/spontaneous-mutations-rife-in-non-familial-schizophrenia.shtml

Jules Asher | EurekAlert!
Further information:
http://www.nih.gov

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>