Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Could the immune system help recovery from stroke?

13.03.2012
Stroke and other diseases and injuries to the brain are often followed by inflammation, caused by a reaction of the body’s immune system.

This reaction has been seen as something that must be combated, but perhaps the immune system could in fact help with recovery following a stroke. A major new EU project, led by Lund University in Sweden and the Weizmann Institute in Israel, is going to study this question.

Stroke is a major public health problem, with 700 000 new cases in the EU and 30 000 new cases in Sweden each year. The EU is now investing EUR 12 million in the project TargetBraIn. The goal of the project is to gain a better understanding of the role of the immune system in stroke.

The immune system protects the body when its tissues are damaged for whatever reason. The cells of the immune system often produce inflammation, which has some negative effects, but which in time helps the original damage to heal.

Stroke is most commonly caused by a cerebral infarction (a blood clot in the brain), which starves the brain of oxygen. It is the damage caused by the lack of oxygen which activates the immune system and leads to inflammation. Until now, this has been seen as a wholly undesirable reaction. To emphasise the positive aspects of the immune system’s reaction is therefore something of a paradigm shift in the field. Professor Michal Schwartz and her research group in Israel have pioneered the study of the positive role of the immune system in repairing damaged nerve cells.

Professor Zaal Kokaia, head of the Stem Cell Centre at Lund University, has long worked with stem cell therapy for brain injuries. He led StemStroke, an EU project which researched the possibility of creating new nerve cells after a stroke through transplants or by encouraging the brain to form new cells. Zaal Kokaia and Michal Schwartz are now coordinator and deputy coordinator respectively of TargetBraIn (an acronym which stands for “Targeting Brain Inflammation for Improved Functional Recovery in Acute Neurodegenerative Disorders”).

“Within TargetBraIn we want to reinforce the positive effects of inflammation and reduce its negative effects. This could be achieved either by trying to change the immune system’s reactions or through stem cell therapy, or both! A combination of the two methods may produce the best results”, says Zaal Kokaia.

The research is still at the experimental stage, and the road to general application on patients will be long. However, as the population of Europe ages, stroke is becoming an increasingly costly disease, hence the EU investment in the field.

For more information, please contact Zaal Kokaia, +46 46 222 0276, +46 705 365917 or zaal.kokaia@med.lu.se.

Helga Ekdahl Heun | idw
Further information:
http://www.lu.se
http://www.vr.se

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>