Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How immune cells defend themselves against HIV

26.09.2012
Heidelberg virologists decode natural blockade mechanism in the target cells of the HIV virus/Publication in the international journal Nature Medicine

A team of scientists led by virologists Prof. Oliver T. Fackler and Prof. Oliver T. Keppler from Heidelberg University Hospital have decoded a mechanism used by the human immune system to protect itself from HIV viruses.

A protein stops the replication of the virus in resting immune cells, referred to as T helper cells, by preventing the transcription of the viral genome into one that can be read by the cell. The ground-breaking results provide new insights into the molecular background of the immunodeficiency syndrome AIDS and could open up starting points for new treatments. The study has now been published – ahead of print online – in the international journal Nature Medicine.

Human immunodeficiency viruses attack different cells of the human immune system, most frequently, “T helper cells”. These lymphocytes play a key role in immune defense, since they activate other immune cells upon contact with pathogens and set off subsequent immune responses. In the course of the HIV infection, they are continuously depleted until the immune system ultimately fails, culminating in AIDS with various infections.
In healthy people, the vast majority of T helper cells in the blood are in a resting state. They are not activated until they contact the pathogens against which they are specialized in defending. In the activated state, the cells are susceptible to HIV infection. “In contrast, resting T helper cells are immune to HIV: While the virus docks, and delivers its genetic information to the cell, the infection does not progress further. We have investigated why this is the case,” explained Prof. Fackler, head of the working group at the Department of Infectious Diseases, Virology. Even if the T helper cells are activated later on, the virus does not replicate, because the genetic information of the virus is degraded during this period.

HIV genome cannot be transcribed into cell-compatible version

The team is headed by Prof. Fackler and Prof. Keppler, who moved from Heidelberg to the University Hospital in Frankfurt in April 2012 and now heads the Institute of Medical Virology there. The researchers discovered that the cellular protein SAMHD1 significantly contributes to protecting the resting immune cells. The protein is present in both resting and activated T helper cells and depletes nucleotides, the building blocks of genetic information. In the active phase the cells double their genetic information and divide, a process that depends on the continoues production of nucleotides. In the resting state, the cell does not require any nucleotides and stops their production, and SAMHD1 degrades the remaining nucleotides. “As a result, the HIV viruses most likely also lack the material they need to transcribe their genetic information into a version that can be used for the cell and to allow it to replicate,” Fackler explained.

In the experiment, if SAMHD1 expression was silenced, resting T helper cells became susceptible to HIV infection. The same was true for immune cells of a patient who is unable to produce SAMHD1 due to a hereditary condition. “This shows that HIV can only replicate in lymphocytes if the effect of the protective protein SAMHD1 is eliminated,” Keppler said. In addition, the researchers discovered that this early protective measure must be followed by other barriers to HIV replication. Even without SAMHD1, no new viruses were released from resting T helper cells. Now that they have described the protective function of SAMHD1 and are able block it, the scientists can for the first time also investigate the downstream mechanisms. “We hope that we will be able to use these findings to develop new strategies in the fight against HIV,” the virologist said.

Literature:
Baldauf, H-M., Pan, X., Erikson, E., Schmidt, S., Daddacha, W., Burggraf, M., Schenkova, K., Ambiel, I., Wabnitz G., Gramberg, T., Panitz, S., Flory, E., Landau, N.R., Sertel, S., Rutsch, F., Lasitschka, F., Kim, B., König, R., Fackler, O.T. and Keppler, O.T. (2012). The deoxynucleoside triphosphate triphosphohydrolase SAMHD1 restricts HIV-1 infection in resting CD4+ T cells. Nature Medicine, published online ahead of print September 12, doi:10.1038/nm.2964..

Internet:
www.klinikum.uni-heidelberg.de/Fackler.6555.0.html

Contact:
Prof. Dr. Oliver T. Fackler
Department für Infektiologie, Virologie
Universitätsklinikum Heidelberg
phone: +49 6221 / 56 13 22
e-mail: Oliver.Fackler@med.uni-heidelberg.de

Heidelberg University Hospital and Medical Faculty:
Internationally recognized patient care, research, and teaching
Heidelberg University Hospital is one of the largest and most prestigious medical centers in Germany. The Medical Faculty of Heidelberg University belongs to the internationally most renowned biomedical research institutions in Europe. Both institutions have the common goal of developing new therapies and implementing them rapidly for patients. With about 11,000 employees, training and qualification is an important issue. Every year, around 550,000 patients are treated on an inpatient or outpatient basis in more than 50 clinics and departments with 2,000 beds. Currently, about 3,600 future physicians are studying in Heidelberg; the reform Heidelberg Curriculum Medicinale (HeiCuMed) is one of the top medical training programs in Germany.

Requests by journalists:
Dr. Annette Tuffs
Head of Public Relations and Press Department
University Hospital of Heidelberg and
Medical Faculty of Heidelberg
Im Neuenheimer Feld 672
D-69120 Heidelberg
Germany
phone: +49 6221 / 56 45 36
fax: +49 6221 / 56 45 44
e-mail: annette.tuffs(at)med.uni-heidelberg.de

Selected english press releases online:
http://www.klinikum.uni-heidelberg.de/presse

Dr. Annette Tuffs | idw
Further information:
http://www.klinikum.uni-heidelberg.de/Fackler.6555.0.html

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>