Images shed new light on inflammation

Researchers at the University of Calgary Faculty of Medicine are using an innovative new imaging technique to study how white blood cells (called neutrophils) respond to inflammation, and have revealed new targets to inhibit the response.

When the body is invaded by infection, the immune system counters by generating inflammation with deployment of white blood cells to the site of danger to kill invading bacteria. However, inappropriate inflammation occurs in the absence of infection when tissues are damaged, and this inappropriate response contributes to diseases such as heart attacks and stroke. Researchers used both experimental animal models and human white blood cells to discover that damaged tissue can release signals that attract white blood cells, and blocking these signal can prevent inappropriate inflammation.

The findings are published in the October 15th edition of Science.

“We have known how white blood cells find their way to sites of infection for many years, but understanding how, or even why white blood cells go to sites of sterile non-infectious tissue damage has been a real dilemma,” says Dr. Paul Kubes, PhD, senior author of the study as well as Director of the Snyder Institute of Infection, Immunity and Inflammation. “Recognizing that damaged cells release “bacteria-like” signals that attract white blood cells and cause inflammation might allow for the development of a whole new class of therapeutics to combat inflammatory diseases.”

Another remarkable aspect of the research is that scientists were able to take unprecedented real-time videos of the white blood cells activity at sites of inflammation. The University of Calgary is one of very few centers in the world using this imaging technology, called spinning disk confocal intravial microscopy, to study the inflammatory response.

“These powerful imaging systems allow us to tackle complicated problems by directly observing the activity of the immune system in the body. Our laboratory is perhaps the only in Canada, and amongst a select few in the world that have this technology, so it is truly a privilege to contribute to this research,” says Braedon McDonald, the lead author of the study and PhD candidate.

Videos: white blood cells responding to an area of tissue damage
http://www.youtube.com/watch?v=smJaOw9dIAw
http://www.youtube.com/watch?v=LSQ7-CoRjas
http://www.youtube.com/watch?v=C2xKMnxadlk

Media Contact

Marta Cyperli EurekAlert!

More Information:

http://www.ucalgary.ca

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Simplified diagnosis of rare eye diseases

Uveitis experts provide an overview of an underestimated imaging technique. Uveitis is a rare inflammatory eye disease. Posterior and panuveitis in particular are associated with a poor prognosis and a…

Targeted use of enfortumab vedotin for the treatment of advanced urothelial carcinoma

New study identifies NECTIN4 amplification as a promising biomarker – Under the leadership of PD Dr. Niklas Klümper, Assistant Physician at the Department of Urology at the University Hospital Bonn…

A novel universal light-based technique

…to control valley polarization in bulk materials. An international team of researchers reports in Nature a new method that achieves valley polarization in centrosymmetric bulk materials in a non-material-specific way…

Partners & Sponsors