Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Illinois–UC Berkeley discovery turns seaweed into biofuel in half the time

University of Illinois scientists have engineered a new strain of yeast that converts seaweed into biofuel in half the time it took just months ago. That's a process that's important outside the Corn Belt, said Yong-Su Jin, a University of Illinois assistant professor of microbial genomics and a faculty member in its Institute for Genomic Biology.

"The key is the strain's ability to ferment cellobiose and galactose simultaneously, which makes the process much more efficient," Jin said.

Red seaweed, hydrolyzed for its fermentable sugars, yields glucose and galactose. But yeast prefers glucose and won't consume galactose until glucose is gone, which adds considerable time to the process, he said.

The new procedure hydrolyzes cellulose into cellobiose, a dimeric form of glucose, then exploits a newly engineered strain of Saccharomyces cerevisiae capable of fermenting cellobiose and galactose simultaneously.

The team introduced a new sugar transporter and enzyme that breaks down cellobiose at the intracellular level. The result is a yeast that consumes cellobiose and galactose in equal amounts at the same time, cutting the production time of biofuel from marine biomass in half, he said.

The research, performed with project funding from the Energy Biosciences Institute, included team members Suk-Jin Ha, Qiaosi Wei, and Soo Rin Kim of the University of Illinois, Urbana-Champaign, and Jonathan M. Galazka and Jamie Cate of the University of California, Berkeley.

Jin compared the previous process to a person taking first a bite of a cheeseburger, then a bite of pickle. The process that uses the new strain puts the pickle in the cheeseburger sandwich so both foods are consumed at the same time.

Co-fermenting the two sugars also makes for a healthier yeast cell, he said.

"It's a faster, superior process. Our view is that this discovery greatly enhances the economic viability of marine biofuels and gives us a better product," he added.

Is seaweed a viable biofuel? Jin and his colleagues are using a red variety (Gelidium amansii) that is abundant on the coastlines of Southeast Asia. In island or peninsular nations that don't have room to grow other biofuel crops, using seaweed as a source of biofuels just makes good sense, he noted.

But biofuels made from marine biomass also have some advantages over fuels made from other biomass crops, he said.

"Producers of terrestrial biofuels have had difficulty breaking down recalcitrant fibers and extracting fermentable sugars. The harsh pretreatment processes used to release the sugars also result in toxic byproducts, inhibiting subsequent microbial fermentation," he said.

Jin cited two other reasons for use of seaweed biofuels. Production yields of marine plant biomass per unit area are much higher than those of terrestrial biomass. And rate of carbon dioxide fixation is much higher in marine biomass, making it an appealing option for sequestration and recycling of carbon dioxide.

The study appears in Applied and Environmental Microbiology and is available online at www://

The Energy Biosciences Institute is a public-private collaboration in which bioscience and biological techniques are being applied to help solve the global energy challenge. The partnership, funded with $500 million for 10 years from the energy company BP, includes researchers from UC Berkeley; the University of Illinois, and the Lawrence Berkeley National Laboratory. Details about the EBI can be found on the website

Phyllis Picklesimer | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht ‘Farming’ bacteria to boost growth in the oceans
24.10.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht Calcium Induces Chronic Lung Infections
24.10.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>