Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Illinois–UC Berkeley discovery turns seaweed into biofuel in half the time

30.08.2011
University of Illinois scientists have engineered a new strain of yeast that converts seaweed into biofuel in half the time it took just months ago. That's a process that's important outside the Corn Belt, said Yong-Su Jin, a University of Illinois assistant professor of microbial genomics and a faculty member in its Institute for Genomic Biology.

"The key is the strain's ability to ferment cellobiose and galactose simultaneously, which makes the process much more efficient," Jin said.

Red seaweed, hydrolyzed for its fermentable sugars, yields glucose and galactose. But yeast prefers glucose and won't consume galactose until glucose is gone, which adds considerable time to the process, he said.

The new procedure hydrolyzes cellulose into cellobiose, a dimeric form of glucose, then exploits a newly engineered strain of Saccharomyces cerevisiae capable of fermenting cellobiose and galactose simultaneously.

The team introduced a new sugar transporter and enzyme that breaks down cellobiose at the intracellular level. The result is a yeast that consumes cellobiose and galactose in equal amounts at the same time, cutting the production time of biofuel from marine biomass in half, he said.

The research, performed with project funding from the Energy Biosciences Institute, included team members Suk-Jin Ha, Qiaosi Wei, and Soo Rin Kim of the University of Illinois, Urbana-Champaign, and Jonathan M. Galazka and Jamie Cate of the University of California, Berkeley.

Jin compared the previous process to a person taking first a bite of a cheeseburger, then a bite of pickle. The process that uses the new strain puts the pickle in the cheeseburger sandwich so both foods are consumed at the same time.

Co-fermenting the two sugars also makes for a healthier yeast cell, he said.

"It's a faster, superior process. Our view is that this discovery greatly enhances the economic viability of marine biofuels and gives us a better product," he added.

Is seaweed a viable biofuel? Jin and his colleagues are using a red variety (Gelidium amansii) that is abundant on the coastlines of Southeast Asia. In island or peninsular nations that don't have room to grow other biofuel crops, using seaweed as a source of biofuels just makes good sense, he noted.

But biofuels made from marine biomass also have some advantages over fuels made from other biomass crops, he said.

"Producers of terrestrial biofuels have had difficulty breaking down recalcitrant fibers and extracting fermentable sugars. The harsh pretreatment processes used to release the sugars also result in toxic byproducts, inhibiting subsequent microbial fermentation," he said.

Jin cited two other reasons for use of seaweed biofuels. Production yields of marine plant biomass per unit area are much higher than those of terrestrial biomass. And rate of carbon dioxide fixation is much higher in marine biomass, making it an appealing option for sequestration and recycling of carbon dioxide.

The study appears in Applied and Environmental Microbiology and is available online at www://aem.asm.org/cgi/content/full/77/16/5822.

The Energy Biosciences Institute is a public-private collaboration in which bioscience and biological techniques are being applied to help solve the global energy challenge. The partnership, funded with $500 million for 10 years from the energy company BP, includes researchers from UC Berkeley; the University of Illinois, and the Lawrence Berkeley National Laboratory. Details about the EBI can be found on the website www.energybiosciencesinstitute.org.

Phyllis Picklesimer | EurekAlert!
Further information:
http://www.illinois.edu
http://www.energybiosciencesinstitute.org

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>