Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Illinois scientists link dietary DHA to male fertility

10.01.2012
Who knew that male fertility depends on sperm-cell architecture? A University of Illinois study reports that a certain omega-3 fatty acid is necessary to construct the arch that turns a round, immature sperm cell into a pointy-headed super swimmer with an extra long tail.

"Normal sperm cells contain an arc-like structure called the acrosome that is critical in fertilization because it houses, organizes, and concentrates a variety of enzymes that sperm use to penetrate an egg," said Manabu Nakamura, a U of I associate professor of biochemical and molecular nutrition.

The study shows for the first time that docosahexaenoic acid (DHA) is essential in fusing the building blocks of the acrosome together. "Without DHA, this vital structure doesn't form and sperm cells don't work," said Timothy Abbott, a doctoral student who co-authored the study.

Men concerned about their fertility may wonder what foods contain DHA. Marine fish, such as salmon or tuna, are excellent sources of this omega-3 fatty acid.

The scientists became intrigued with DHA's role in creating healthy sperm when they experimented with "knockout" mice that lack a gene essential to its synthesis. "We looked at sperm count, shape, and motility, and tested the breeding success rate. The male mice that lacked DHA were basically infertile," Nakamura said.

But when DHA was introduced into the mice's diet, fertility was completely restored. "It was very striking. When we fed the mice DHA, all these abnormalities were prevented," he said.

The scientists then used confocal laser scanning (3D) microscopy to look at thin slices of tissue in progressive stages of a sperm cell's development. By labeling enzymes with fluorescence, they could track their location in a cell.

"We could see that the acrosome is constructed when small vesicles containing enzymes fuse together in an arc. But that fusion doesn't happen without DHA," he said.

In the absence of DHA, the vesicles are formed but they don't come together to make the arch that is so important in sperm cell structure, he noted.

Nakamura finds the role this omega-3 fatty acid plays in membrane fusion particularly exciting. Because DHA is abundant in specific tissues, including the brain and the retina as well as the testes, the scientists believe their research findings could also impact research relating to brain function and vision.

"It's logical to hypothesize that DHA is involved in vesicle fusion elsewhere in the body, and because the brain contains so much of it, we wonder if deficiencies could play a role, for example, in the development of dementia. Any communication between neurons in the brain involves vesicle fusion," he noted.

The Illinois scientists will continue to study sperm; meanwhile, Nakamura has sent some of his DHA-deficient knockout mice to other laboratories where scientists are studying DHA function in the brain and the retina.

The study was published in a recent issue of Biology of Reproduction. Co-authors are Manuel Roqueta-Rivera, Timothy L. Abbott, Mayandi Sivaguru, and Rex A. Hess, all of the U of I. The work was supported in part by a CONACyT Mexico fellowship award.

Phyllis Picklesimer | EurekAlert!
Further information:
http://www.illinois.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>