Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hydrogen may be key to growth of high-quality graphene

19.07.2011
A new approach to growing graphene greatly reduces problems that have plagued researchers in the past and clears a path to the crystalline form of graphite's use in sophisticated electronic devices of tomorrow.

Findings of researchers at the Department of Energy's Oak Ridge National Laboratory demonstrate that hydrogen rather than carbon dictates the graphene grain shape and size, according to a team led by ORNL's Ivan Vlassiouk, a Eugene Wigner Fellow, and Sergei Smirnov, a professor of chemistry at New Mexico State University. This research is published in ACS Nano (http://pubs.acs.org/doi/abs/10.1021/nn201978y).


Graphene grains come in several different shapes. Hydrogen gas controls the grains' appearance.

"Hydrogen not only initiates the graphene growth, but controls the graphene shape and size," Vlassiouk said. "In our paper, we have described a method to grow well-defined graphene grains that have perfect hexagonal shapes pointing to the faultless single crystal structure."

In the past two years, graphene growth has involved the decomposition of carbon-containing gases such as methane on a copper foil under high temperatures, the so-called chemical vapor deposition method. Little was known about the exact process, but researchers knew they would have to gain a better understanding of the growth mechanism before they could produce high-quality graphene films.

... more about:
»Hydrogen »Laboratory »Materials Science »NSRCs »ORNL

Until now, grown graphene films have consisted of irregular- shaped graphene grains of different sizes, which were usually not single crystals.

"We have shown that, surprisingly, it is not only the carbon source and the substrate that dictate the growth rate, the shape and size of the graphene grain," Vlassiouk said. "We found that hydrogen, which was thought to play a rather passive role, is crucial for graphene growth as well. It contributes to both the activation of adsorbed molecules that initiate the growth of graphene and to the elimination of weak bonds at the grain edges that control the quality of the graphene."

Using their new recipe, Vlassiouk and colleagues have created a way to reliably synthesize graphene on a large scale. The fact that their technique allows them to control grain size and boundaries may result in improved functionality of the material in transistors, semiconductors and potentially hundreds of electronic devices.

Implications of this research are significant, according to Vlassiouk, who said, "Our findings are crucial for developing a method for growing ultra-large-scale single domain graphene that will constitute a major breakthrough toward graphene implementation in real-world devices."

Other authors of the paper, "Role of Hydrogen in Chemical Vapor Deposition Growth of Large Single-Crystal Graphene," are Murari Regmi, Pasquale Fulvio, Sheng Dai, Panos Datskos and Gyula Eres of ORNL.

The research was supported by the Department of Energy's Office of Science, in part through the Fluid Interface Reactions, Structures and Transport Center, a DOE Energy Frontier Research Center led by ORNL.

A portion of the work was performed at the Center for Nanophase Materials Sciences, one of the five DOE Nanoscale Science Research Centers supported by the DOE Office of Science, premier national user facilities for interdisciplinary research at the nanoscale. Together the NSRCs comprise a suite of complementary facilities that provide researchers with state-of-the-art capabilities to fabricate, process, characterize and model nanoscale materials, and constitute the largest infrastructure investment of the National Nanotechnology Initiative.

The NSRCs are located at DOE's Argonne, Brookhaven, Lawrence Berkeley, Oak Ridge and Sandia and Los Alamos national laboratories. For more information about the DOE NSRCs, please visit http://science.energy.gov/bes/suf/user-facilities/nanoscale-science-research-centers/. Work at Lawrence Berkeley National Laboratory and the University of California, Berkeley, was supported by DOE's Office of Science and the Semiconductor Research Corporation.

UT-Battelle manages ORNL for DOE's Office of Science.

Ron Walli | EurekAlert!
Further information:
http://www.ornl.gov

Further reports about: Hydrogen Laboratory Materials Science NSRCs ORNL

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>