Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Hunting the unseen

Sighting a theoretical exotic particle may become possible thanks to recently developed mathematical simulations

A better knowledge about the composition of sub-atomic particles such as protons and neutrons has sparked conjecture about, as yet, unseen particles. A tool based on theoretical calculations that could aid the search for these particles has been developed by a team of researchers in Japan called the HAL QCD Collaboration.

At its most fundamental level, matter consists of particles known as quarks. Particle physicists refer to the six different types as ‘flavors’: up, down, charm, strange, top and bottom. The protons and neutrons found in the nucleus of an atom are examples of a class of particle called baryons: particles consisting of three quarks. Two baryons bound together are called dibaryons, but only one dibaryon has been found to date: a bound proton and neutron that has three up quarks and three down quarks in total.

Models that reveal the potential physical properties of dibaryons, such as their mass and binding energy, are crucial if more of these particles are to be discovered in the future. To this end, the collaboration, including Tetsuo Hatsuda from the RIKEN Nishina Center for Accelerator-Based Science in Wako, developed simulations that shed new light on one promising candidate: the H dibaryon, which comprises two up, two down and two strange quarks (Fig. 1).

The dynamics of quarks are described by an intricate theory known as quantum chromodynamics (QCD). The simulations, however, become increasingly difficult when more particles need to be included: dibaryons with six quarks are particularly testing. Hatsuda and his colleagues used an approach known as lattice QCD in which time and space are considered as a grid of discrete points. They simplified the calculation by assuming that all quarks have the same mass, but the strange quark is actually heavier than the up and down quarks. “We know from previous theoretical studies that the binding energy should be at its largest in the equal mass case,” says Hatsuda. “If we had not found a bound state in the equal mass case, there would be no hope that the bound state exists in the realistic unequal mass case.”

The results from the collaboration’s simulations showed that the total energy of the dibaryon is less than the combined energy of two separate baryons, which verifies that H dibaryons are energetically stable. “We next hope to find the precise binding energy for unequal quark masses, which represents one of the major challenges in numerical QCD simulations,” Hatsuda adds.

The corresponding author for this highlight is based at the Quantum Hadron Physics Laboratory, RIKEN Nishina Center for Accelerator-Based Science

Inoue, T., Ishii, N., Aoki, S., Doi, T., Hatsuda, T., Ikeda, Y., Murano, K., Nemura, H. & Sasaki, K. Bound H dibaryon in flavor SU(3) limit of lattice QCD. Physical Review Letters 106, 162002 (2011).

gro-pr | Research asia research news
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>