Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Human Y Chromosome Much Older Than Previously Thought

The discovery and UA analysis of an extremely rare African American Y chromosome pushes back the time of the most recent common ancestor for the Y chromosome lineage tree to 338,000 years ago. This time predates the age of the oldest known anatomically modern human fossils.
UA geneticists have discovered the oldest known genetic branch of the human Y chromosome – the hereditary factor determining male sex.

The new divergent lineage, which was found in an individual who submitted his DNA to Family Tree DNA, a company specializing in DNA analysis to trace family roots, branched from the Y chromosome tree before the first appearance of anatomically modern humans in the fossil record.

The results are published in the American Journal of Human Genetics.

"Our analysis indicates this lineage diverged from previously known Y chromosomes about 338,000 ago, a time when anatomically modern humans had not yet evolved," said Michael Hammer, an associate professor in the University of Arizona's department of ecology and evolutionary biology and a research scientist at the UA's Arizona Research Labs. "This pushes back the time the last common Y chromosome ancestor lived by almost 70 percent."

Unlike the other human chromosomes, the majority of the Y chromosome does not exchange genetic material with other chromosomes, which makes it simpler to trace ancestral relationships among contemporary lineages. If two Y chromosomes carry the same mutation, it is because they share a common paternal ancestor at some point in the past. The more mutations that differ between two Y chromosomes the farther back in time the common ancestor lived.

Originally, a DNA sample obtained from an African American living in South Carolina was submitted to the National Geographic Genographic Project. When none of the genetic markers used to assign lineages to known Y chromosome groupings were found, the DNA sample was sent to Family Tree DNA for sequencing. Fernando Mendez, a postdoctoral researcher in Hammer's lab, led the effort to analyze the DNA sequence, which included more than 240,000 base pairs of the Y chromosome.

Hammer said "the most striking feature of this research is that a consumer genetic testing company identified a lineage that didn't fit anywhere on the existing Y chromosome tree, even though the tree had been constructed based on perhaps a half-million individuals or more. Nobody expected to find anything like this."

About 300,000 years ago, the time the Neanderthals are believed to have split from the ancestral human lineage. It was not until more than 100,000 years later that anatomically modern humans appear in the fossil record. They differ from the more archaic forms by a more lightly built skeleton, a smaller face tucked under a high forehead, the absence of a cranial ridge and smaller chins.

Hammer said the newly discovered Y chromosome variation is extremely rare. Through large database searches, his team eventually was able to find a similar chromosome in the Mbo, a population living in a tiny area of western Cameroon in sub-Saharan Africa.

"This was surprising because previously the most diverged branches of the Y chromosome were found in traditional hunter-gatherer populations such as Pygmies and the click-speaking KhoeSan, who are considered to be the most diverged human populations living today."

"Instead, the sample matched the Y chromosome DNA of 11 men, who all came from a very small region of western Cameroon," Hammer said. "And the sequences of those individuals are variable, so it's not like they all descended from the same grandfather."

Hammer cautions against popular concepts of "mitochondrial Eve" or "Y chromosome Adam" that suggest all of humankind descended from exactly one pair of humans that lived at a certain point in human evolution.

"There has been too much emphasis on this in the past," he said. "It is a misconception that the genealogy of a single genetic region reflects population divergence. Instead, our results suggest that there are pockets of genetically isolated communities that together preserve a great deal of human diversity."

Still, Hammer said, "It is likely that other divergent lineages will be found, whether in Africa or among African-Americans in the U.S. and that some of these may further increase the age of the Y chromosome tree."

He added: "There has been a lot of hype with people trying to trace their Y chromosome to different tribes, but this individual from South Carolina can say he did it."

The study came about by combined efforts of a private business, Family Tree DNA, the efforts of a citizen scientist, Bonnie Schrack, and the research capabilities at the UA.

Human sex-determining chromosomes: X chromosome (left) and the much smaller Y chromosome.


Research paper, "An African American Paternal Lineage Adds an Extremely Ancient Root to the Human Y Chromosome Phylogenetic Tree" (Abstract):

Michael Hammer Lab:

Science contact:
Michael Hammer
Department of Ecology and Evolutionary Biology
The University of Arizona
Media contact:
Daniel Stolte
University Communications
The University of Arizona

Daniel Stolte | The University of Arizona
Further information:

More articles from Life Sciences:

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

nachricht Researchers Discover New Anti-Cancer Protein
22.03.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Modular safety concept increases flexibility in plant conversion

22.03.2018 | Trade Fair News

New interactive map shows climate change everywhere in world

22.03.2018 | Earth Sciences

New technologies and computing power to help strengthen population data

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>