Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Human Y Chromosome Much Older Than Previously Thought

05.03.2013
The discovery and UA analysis of an extremely rare African American Y chromosome pushes back the time of the most recent common ancestor for the Y chromosome lineage tree to 338,000 years ago. This time predates the age of the oldest known anatomically modern human fossils.
UA geneticists have discovered the oldest known genetic branch of the human Y chromosome – the hereditary factor determining male sex.

The new divergent lineage, which was found in an individual who submitted his DNA to Family Tree DNA, a company specializing in DNA analysis to trace family roots, branched from the Y chromosome tree before the first appearance of anatomically modern humans in the fossil record.

The results are published in the American Journal of Human Genetics.

"Our analysis indicates this lineage diverged from previously known Y chromosomes about 338,000 ago, a time when anatomically modern humans had not yet evolved," said Michael Hammer, an associate professor in the University of Arizona's department of ecology and evolutionary biology and a research scientist at the UA's Arizona Research Labs. "This pushes back the time the last common Y chromosome ancestor lived by almost 70 percent."

Unlike the other human chromosomes, the majority of the Y chromosome does not exchange genetic material with other chromosomes, which makes it simpler to trace ancestral relationships among contemporary lineages. If two Y chromosomes carry the same mutation, it is because they share a common paternal ancestor at some point in the past. The more mutations that differ between two Y chromosomes the farther back in time the common ancestor lived.

Originally, a DNA sample obtained from an African American living in South Carolina was submitted to the National Geographic Genographic Project. When none of the genetic markers used to assign lineages to known Y chromosome groupings were found, the DNA sample was sent to Family Tree DNA for sequencing. Fernando Mendez, a postdoctoral researcher in Hammer's lab, led the effort to analyze the DNA sequence, which included more than 240,000 base pairs of the Y chromosome.

Hammer said "the most striking feature of this research is that a consumer genetic testing company identified a lineage that didn't fit anywhere on the existing Y chromosome tree, even though the tree had been constructed based on perhaps a half-million individuals or more. Nobody expected to find anything like this."

About 300,000 years ago, the time the Neanderthals are believed to have split from the ancestral human lineage. It was not until more than 100,000 years later that anatomically modern humans appear in the fossil record. They differ from the more archaic forms by a more lightly built skeleton, a smaller face tucked under a high forehead, the absence of a cranial ridge and smaller chins.

Hammer said the newly discovered Y chromosome variation is extremely rare. Through large database searches, his team eventually was able to find a similar chromosome in the Mbo, a population living in a tiny area of western Cameroon in sub-Saharan Africa.

"This was surprising because previously the most diverged branches of the Y chromosome were found in traditional hunter-gatherer populations such as Pygmies and the click-speaking KhoeSan, who are considered to be the most diverged human populations living today."

"Instead, the sample matched the Y chromosome DNA of 11 men, who all came from a very small region of western Cameroon," Hammer said. "And the sequences of those individuals are variable, so it's not like they all descended from the same grandfather."

Hammer cautions against popular concepts of "mitochondrial Eve" or "Y chromosome Adam" that suggest all of humankind descended from exactly one pair of humans that lived at a certain point in human evolution.

"There has been too much emphasis on this in the past," he said. "It is a misconception that the genealogy of a single genetic region reflects population divergence. Instead, our results suggest that there are pockets of genetically isolated communities that together preserve a great deal of human diversity."

Still, Hammer said, "It is likely that other divergent lineages will be found, whether in Africa or among African-Americans in the U.S. and that some of these may further increase the age of the Y chromosome tree."

He added: "There has been a lot of hype with people trying to trace their Y chromosome to different tribes, but this individual from South Carolina can say he did it."

The study came about by combined efforts of a private business, Family Tree DNA, the efforts of a citizen scientist, Bonnie Schrack, and the research capabilities at the UA.

Human sex-determining chromosomes: X chromosome (left) and the much smaller Y chromosome.

LINKS:

Research paper, "An African American Paternal Lineage Adds an Extremely Ancient Root to the Human Y Chromosome Phylogenetic Tree" (Abstract): http://www.cell.com/AJHG/abstract/S0002-9297(13)00073-6

Michael Hammer Lab: http://hammerlab.biosci.arizona.edu/research.html

CONTACTS:
Science contact:
Michael Hammer
Department of Ecology and Evolutionary Biology
The University of Arizona
mfh@email.arizona.edu
Media contact:
Daniel Stolte
University Communications
The University of Arizona
520-626-4402
stolte@email.arizona.edu

Daniel Stolte | The University of Arizona
Further information:
http://www.arizona.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>