Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Human umbilical cord blood cells aid diabetic wound healing

23.02.2011
Transplanting human umbilical cord blood-derived endothelial progenitor cells (EPCs) has been found to "significantly accelerate" wound closure in diabetic mouse models, said a team of Korean researchers publishing in the current issue of Cell Transplantation (19:12), now freely available on-line at http://www.ingentaconnect.com/content/cog/ct/ .

According to the study's corresponding author, Dr. Wonhee Suh of the CHA University Stem Cell Institute, diabetes is often associated with impaired wound healing. While the therapeutic potential of transplanted EPCs has been demonstrated in animal models and in humans who have suffered stroke, myocardial infarction and peripheral artery disease, their effect in healing stubborn wounds has not been studied to the same degree.

"EPCs are involved in revascularization of injured tissue and tissue repair," said Dr. Suh. "Wounds associated with diabetes that resist healing are also associated with decreased peripheral blood flow and often resist current therapies. Normal wounds, without underlying pathological defects heal readily, but the healing deficiency of diabetic wounds can be attributed to a number of factors, including decreased production of growth factors and reduced revascularization.

The researchers, who transplanted EPCs into an experimental group of mice modeled with diabetes-associated wounds, but did not transplant EPCs into a control group, found that the EPCs "prompted wound healing and increased neovascularization" in the experimental group.

"The transplantation of EPCs derived from human umbilical blood cells accelerated wound closure in diabetic mice from the earliest point," said Dr. Suh. "Enhanced re-epithelialization made a great contribution in accelerating wound closure rate."

The researchers found that growth factors and cytokines (small proteins secreted by specific cells of the immune system) were "massively produced" at the wounded skin sites and contributed to the healing process.

"It remains unclear, however, which mechanism plays the dominant role in EPC-mediated tissue regeneration," commented Dr. Suh. "Further study is required since numerous studies have shown that the actual magnitude of EPC incorporation into the vasculature varies substantially from study to study."

"This experimental study opens the possibility of the future clinical use of endothelial progenitor cells derived from human cord blood in the treatment of diabetic wounds in humans" said Prof. Voltarelli, Professor of Clinical Medicine & Clinical Immunology at the University of Sao Pãulo, Brazil and section editor for Cell Transplantation . "Interestingly, it also shows that the culture medium used to grow the cells (conditioned media) has the same healing effect as the cells, so that it could be used as a cell-free form of treatment."

Contact: Dr. Wonhee Suh, Department of Biomedical Sciences, College of Life Sciences, CHA University, CHA Stem Cell Institute, 606-16 Yeoksam 1-dong, Kangnam-gu, Seoul, 135-907, Korea

Tel: 82-2-3468-3668 Fax: 82-2-538-4102 Email: wsuh@cha.ac.kr

Citation: Kim, J. Y.; Song, S-H.; Kim, K. L.; Maeng, Y-S.; Im, J-E.; Yie, S. W.; Ahn, Y. K.; Kim, D-K.; Suh, W. Human Cord Blood-derived Endothelial Progenitor Cells and their Conditioned Media Exhibit Therapeutic Equivalence for Diabetic Wound Healing. Cell Transplant. 19(12):1635-1644; 2010.

The editorial offices for CELL TRANSPLANTATION are at the Center of Excellence for Aging and Brain Repair, College of Medicine, the University of South Florida and the Diabetes Research Institute, University of Miami Miller School of Medicine. Contact, David Eve, PhD. at celltransplantation@gmail.com or Camillo Ricordi, MD at ricordi@miami.edu

News Release by Randolph Fillmore, Florida Science Communications, www.sciencescribe.net

David Eve | EurekAlert!
Further information:
http://www.ingentaconnect.com/content/cog/ct/

More articles from Life Sciences:

nachricht Copper hydroxide nanoparticles provide protection against toxic oxygen radicals in cigarette smoke
29.05.2017 | Johannes Gutenberg-Universität Mainz

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Camera on NASA's Lunar Orbiter survived 2014 meteoroid hit

29.05.2017 | Physics and Astronomy

Strathclyde-led research develops world's highest gain high-power laser amplifier

29.05.2017 | Physics and Astronomy

A 3-D look at the 2015 El Niño

29.05.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>