Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How Do Phytoplankton Survive a Scarcity of a Critical Nutrient?

06.06.2014

New study up-ends conventional wisdom

Phytoplankton—tiny, photosynthetic organisms—are essential to life on Earth, supplying us with roughly half the oxygen we breathe.  Like all other life forms, phytoplankton require the element phosphorus to carry out critical cellular activity, but in some parts of the world’s ocean, P is in limited supply. How do phytoplankton survive when phosphorus is difficult to find?


To conduct their work, the scientists collected water samples at different depths of the ocean during two cruises from the relatively nutrient-rich waters off Woods Hole to the phosphorus-starved subtropical Sargasso Sea near Bermuda in 2008 and 2012. Pictured here are corresponding author WHOI Associate Scientist Benjamin Van Mooy (orange helmet) and research assistant Justin Ossolinski (blue helmet) working with crew members of the R/V Knorr to deploy a sediment net-trap used in the study. (Photo by Suni Shah, Woods Hole Oceanographic Institution)


The study's lead author Patrick Martin (second from right) and WHOI marine chemist Ben Van Mooy (left) with their colleagues working around a water sampling rosette. (Photo courtesy of Ben Van Mooy, Woods Hole Oceanographic Institution)

Phytoplankton can alter their biochemical make-up according to the availability of nutrients in the water. When phosphorus (P) is particularly abundant in the water, phytoplankton produce and store a form of P called polyphosphate, or poly-P, to use later during times when P is less abundant.

The accepted wisdom has been that poly-P was would be found stored by micro-organisms in waters where P was abundant and would be scarce in waters depleted of P. But when a group of researchers from the Woods Hole Oceanographic Institution (WHOI) and the Bigelow Laboratory for Ocean Sciences tested that notion, conducting the most comprehensive survey of poly-P content and distribution in the western North Atlantic, what they found was surprising.

Rather than finding low levels of poly-P in the phytoplankton in the Sargasso Sea where P is scarce, they found the phytoplankton were enriched with poly-P when compared to those in the nutrient rich waters in the western North Atlantic – the opposite of what they had expected. They also found that in low-P environments, poly-P was more readily recycled from sinking particles, retaining it in shallower waters where phytoplankton live and making it available for their use.   

“We’ve know that Poly-P existed in phytoplankton for a very long time.  The conventional wisdom that phytoplankton made more Poly-P when they had more phosphorus just made so much intuitive sense that few people have worked on this molecule,” said WHOI marine chemist Ben Van Moy, the corresponding author on the study.  “However, there were a few hints in the literature that the whole story on poly-P was not completely wrapped up.  We certainly didn’t set out thinking that we might upend current thinking, and it took us a long time before we would believe our own results.  I think the larger message from fundamental discoveries like this is that we have so much more to learn about phosphorous and how phytoplankton deal with its scarcity in certain regions of the sea.  Hopefully this paper will be a launching point for a lot of exciting science.”

The study, "Accumulation and enhanced cycling of polyphosphate by Sargasso Sea plankton in response to low phosphorus," was recently published in the Proceedings of the National Academy of Sciences (PNAS).

The work was supported by a Doherty Postdoctoral Scholarship and the National Science Foundation.

The Woods Hole Oceanographic Institution is a private, non-profit organization on Cape Cod, Mass., dedicated to marine research, engineering, and higher education. Established in 1930 on a recommendation from the National Academy of Sciences, its primary mission is to understand the ocean and its interaction with the Earth as a whole, and to communicate a basic understanding of the ocean’s role in the changing global environment. For more information, please visit www.whoi.edu.

Originally published: June 5, 2014

WHOI Media Office | Eurek Alert!

Further reports about: Earth Laboratory Oceanographic Phytoplankton WHOI activity biochemical environment

More articles from Life Sciences:

nachricht Not of Divided Mind
19.01.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht CRISPR meets single-cell sequencing in new screening method
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>