Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How a Silly Putty ingredient could advance stem cell therapies

14.04.2014

The sponginess of the environment where human embryonic stem cells are growing affects the type of specialized cells they eventually become, a University of Michigan study shows.

The researchers coaxed human embryonic stem cells to turn into working spinal cord cells more efficiently by growing the cells on a soft, utrafine carpet made of a key ingredient in Silly Putty. Their study is published online at Nature Materials on April 13.

This research is the first to directly link physical, as opposed to chemical, signals to human embryonic stem cell differentiation. Differentiation is the process of the source cells morphing into the body's more than 200 cell types that become muscle, bone, nerves and organs, for example.

Jianping Fu, U-M assistant professor of mechanical engineering, says the findings raise the possibility of a more efficient way to guide stem cells to differentiate and potentially provide therapies for diseases such as amyotrophic lateral sclerosis (Lou Gehrig's disease), Huntington's or Alzheimer's.

In the specially engineered growth system—the 'carpets' Fu and his colleagues designed—microscopic posts of the Silly Putty component polydimethylsiloxane serve as the threads. By varying the post height, the researchers can adjust the stiffness of the surface they grow cells on. Shorter posts are more rigid—like an industrial carpet. Taller ones are softer—more plush.

The team found that stem cells they grew on the tall, softer micropost carpets turned into nerve cells much faster and more often than those they grew on the stiffer surfaces. After 23 days, the colonies of spinal cord cells—motor neurons that control how muscles move—that grew on the softer micropost carpets were four times more pure and 10 times larger than those growing on either traditional plates or rigid carpets.

"This is extremely exciting," Fu said. "To realize promising clinical applications of human embryonic stem cells, we need a better culture system that can reliably produce more target cells that function well. Our approach is a big step in that direction, by using synthetic microengineered surfaces to control mechanical environmental signals."

Fu is collaborating with doctors at the U-M Medical School. Eva Feldman, the Russell N. DeJong Professor of Neurology, studies amyotrophic lateral sclerosis, or ALS. It paralyzes patients as it kills motor neurons in the brain and spinal cord.

Researchers like Feldman believe stem cell therapies—both from embryonic and adult varieties—might help patients grow new nerve cells. She's using Fu's technique to try to make fresh neurons from patients' own cells. At this point, they're examining how and whether the process could work, and they hope to try it in humans in the future.

"Professor Fu and colleagues have developed an innovative method of generating high-yield and high-purity motor neurons from stem cells," Feldman said. "For ALS, discoveries like this provide tools for modeling disease in the laboratory and for developing cell-replacement therapies."

Fu's findings go deeper than cell counts. The researchers verified that the new motor neurons they obtained on soft micropost carpets showed electrical behaviors comparable to those of neurons in the human body. They also identified a signaling pathway involved in regulating the mechanically sensitive behaviors. A signaling pathway is a route through which proteins ferry chemical messages from the cell's borders to deep inside it. The pathway they zeroed in on, called Hippo/YAP, is also involved in controlling organ size and both causing and preventing tumor growth.

Fu says his findings could also provide insights into how embryonic stem cells differentiate in the body.

"Our work suggests that physical signals in the cell environment are important in neural patterning, a process where nerve cells become specialized for their specific functions based on their physical location in the body," he said.

###

The paper is titled "Hippo/YAP-mediated rigidity-dependent motor neuron differentiation of human pluripotent stem cells." Fu collaborated with researchers at the School of Dentistry and the Department of Molecular, Cellular and Developmental Biology in the U-M College of Literature, Science, and the Arts.

Jianping Fu's Integrated Biosystems and Biomechanics Lab: http://me.engin.umich.edu/ibbl

New insights into how stem cells determine what tissue to become: http://ns.umich.edu/new/releases/7904

Nicole Casal Moore | Eurek Alert!
Further information:
http://www.umich.edu

Further reports about: differentiate neurons pathway sclerosis signals spinal surfaces therapies

More articles from Life Sciences:

nachricht Neural efficiency hypothesis confirmed
28.07.2015 | ETH Zurich

nachricht Scientists study predator-prey behavior between sharks and turtles
28.07.2015 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Superfast fluorescence sets new speed record

Plasmonic device has speed and efficiency to serve optical computers

Researchers have developed an ultrafast light-emitting device that can flip on and off 90 billion times a second and could form the basis of optical computing.

Im Focus: Unlocking the rice immune system

Joint BioEnergy Institute study identifies bacterial protein that is key to protecting rice against bacterial blight

A bacterial signal that when recognized by rice plants enables the plants to resist a devastating blight disease has been identified by a multi-national team...

Im Focus: Smarter window materials can control light and energy

Researchers in the Cockrell School of Engineering at The University of Texas at Austin are one step closer to delivering smart windows with a new level of energy efficiency, engineering materials that allow windows to reveal light without transferring heat and, conversely, to block light while allowing heat transmission, as described in two new research papers.

By allowing indoor occupants to more precisely control the energy and sunlight passing through a window, the new materials could significantly reduce costs for...

Im Focus: Simulations lead to design of near-frictionless material

Argonne scientists used Mira to identify and improve a new mechanism for eliminating friction, which fed into the development of a hybrid material that exhibited superlubricity at the macroscale for the first time. Argonne Leadership Computing Facility (ALCF) researchers helped enable the groundbreaking simulations by overcoming a performance bottleneck that doubled the speed of the team's code.

While reviewing the simulation results of a promising new lubricant material, Argonne researcher Sanket Deshmukh stumbled upon a phenomenon that had never been...

Im Focus: NASA satellite camera provides 'EPIC' view of Earth

A NASA camera on the Deep Space Climate Observatory (DSCOVR) satellite has returned its first view of the entire sunlit side of Earth from one million miles away.

The color images of Earth from NASA's Earth Polychromatic Imaging Camera (EPIC) are generated by combining three separate images to create a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Euro Bio-inspired - International Conference and Exhibition on Bio-inspired Materials

23.07.2015 | Event News

Clash of Realities – International Conference on the Art, Technology and Theory of Digital Games

10.07.2015 | Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

 
Latest News

Neural efficiency hypothesis confirmed

28.07.2015 | Life Sciences

Scientists study predator-prey behavior between sharks and turtles

28.07.2015 | Life Sciences

Tropical deforestation releases large amounts of soil carbon

28.07.2015 | Agricultural and Forestry Science

VideoLinks
B2B-VideoLinks
More VideoLinks >>>