Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How a Silly Putty ingredient could advance stem cell therapies

14.04.2014

The sponginess of the environment where human embryonic stem cells are growing affects the type of specialized cells they eventually become, a University of Michigan study shows.

The researchers coaxed human embryonic stem cells to turn into working spinal cord cells more efficiently by growing the cells on a soft, utrafine carpet made of a key ingredient in Silly Putty. Their study is published online at Nature Materials on April 13.

This research is the first to directly link physical, as opposed to chemical, signals to human embryonic stem cell differentiation. Differentiation is the process of the source cells morphing into the body's more than 200 cell types that become muscle, bone, nerves and organs, for example.

Jianping Fu, U-M assistant professor of mechanical engineering, says the findings raise the possibility of a more efficient way to guide stem cells to differentiate and potentially provide therapies for diseases such as amyotrophic lateral sclerosis (Lou Gehrig's disease), Huntington's or Alzheimer's.

In the specially engineered growth system—the 'carpets' Fu and his colleagues designed—microscopic posts of the Silly Putty component polydimethylsiloxane serve as the threads. By varying the post height, the researchers can adjust the stiffness of the surface they grow cells on. Shorter posts are more rigid—like an industrial carpet. Taller ones are softer—more plush.

The team found that stem cells they grew on the tall, softer micropost carpets turned into nerve cells much faster and more often than those they grew on the stiffer surfaces. After 23 days, the colonies of spinal cord cells—motor neurons that control how muscles move—that grew on the softer micropost carpets were four times more pure and 10 times larger than those growing on either traditional plates or rigid carpets.

"This is extremely exciting," Fu said. "To realize promising clinical applications of human embryonic stem cells, we need a better culture system that can reliably produce more target cells that function well. Our approach is a big step in that direction, by using synthetic microengineered surfaces to control mechanical environmental signals."

Fu is collaborating with doctors at the U-M Medical School. Eva Feldman, the Russell N. DeJong Professor of Neurology, studies amyotrophic lateral sclerosis, or ALS. It paralyzes patients as it kills motor neurons in the brain and spinal cord.

Researchers like Feldman believe stem cell therapies—both from embryonic and adult varieties—might help patients grow new nerve cells. She's using Fu's technique to try to make fresh neurons from patients' own cells. At this point, they're examining how and whether the process could work, and they hope to try it in humans in the future.

"Professor Fu and colleagues have developed an innovative method of generating high-yield and high-purity motor neurons from stem cells," Feldman said. "For ALS, discoveries like this provide tools for modeling disease in the laboratory and for developing cell-replacement therapies."

Fu's findings go deeper than cell counts. The researchers verified that the new motor neurons they obtained on soft micropost carpets showed electrical behaviors comparable to those of neurons in the human body. They also identified a signaling pathway involved in regulating the mechanically sensitive behaviors. A signaling pathway is a route through which proteins ferry chemical messages from the cell's borders to deep inside it. The pathway they zeroed in on, called Hippo/YAP, is also involved in controlling organ size and both causing and preventing tumor growth.

Fu says his findings could also provide insights into how embryonic stem cells differentiate in the body.

"Our work suggests that physical signals in the cell environment are important in neural patterning, a process where nerve cells become specialized for their specific functions based on their physical location in the body," he said.

###

The paper is titled "Hippo/YAP-mediated rigidity-dependent motor neuron differentiation of human pluripotent stem cells." Fu collaborated with researchers at the School of Dentistry and the Department of Molecular, Cellular and Developmental Biology in the U-M College of Literature, Science, and the Arts.

Jianping Fu's Integrated Biosystems and Biomechanics Lab: http://me.engin.umich.edu/ibbl

New insights into how stem cells determine what tissue to become: http://ns.umich.edu/new/releases/7904

Nicole Casal Moore | Eurek Alert!
Further information:
http://www.umich.edu

Further reports about: differentiate neurons pathway sclerosis signals spinal surfaces therapies

More articles from Life Sciences:

nachricht Novel 'repair system' discovered in algae may yield new tools for biotechnology
29.07.2016 | Boyce Thompson Institute

nachricht Molecular troublemakers instead of antibiotics?
29.07.2016 | Christian-Albrechts-Universität zu Kiel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-assembling nano inks form conductive and transparent grids during imprint

Transparent electronics devices are present in today’s thin film displays, solar cells, and touchscreens. The future will bring flexible versions of such devices. Their production requires printable materials that are transparent and remain highly conductive even when deformed. Researchers at INM – Leibniz Institute for New Materials have combined a new self-assembling nano ink with an imprint process to create flexible conductive grids with a resolution below one micrometer.

To print the grids, an ink of gold nanowires is applied to a substrate. A structured stamp is pressed on the substrate and forces the ink into a pattern. “The...

Im Focus: The Glowing Brain

A new Fraunhofer MEVIS method conveys medical interrelationships quickly and intuitively with innovative visualization technology

On the monitor, a brain spins slowly and can be examined from every angle. Suddenly, some sections start glowing, first on the side and then the entire back of...

Im Focus: Newly discovered material property may lead to high temp superconductivity

Researchers at the U.S. Department of Energy's (DOE) Ames Laboratory have discovered an unusual property of purple bronze that may point to new ways to achieve high temperature superconductivity.

While studying purple bronze, a molybdenum oxide, researchers discovered an unconventional charge density wave on its surface.

Im Focus: Mapping electromagnetic waveforms

Munich Physicists have developed a novel electron microscope that can visualize electromagnetic fields oscillating at frequencies of billions of cycles per second.

Temporally varying electromagnetic fields are the driving force behind the whole of electronics. Their polarities can change at mind-bogglingly fast rates, and...

Im Focus: Continental tug-of-war - until the rope snaps

Breakup of continents with two speed: Continents initially stretch very slowly along the future splitting zone, but then move apart very quickly before the onset of rupture. The final speed can be up to 20 times faster than in the first, slow extension phase.phases

Present-day continents were shaped hundreds of millions of years ago as the supercontinent Pangaea broke apart. Derived from Pangaea’s main fragments Gondwana...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2016: 7th Conference on the Art, Technology and Theory of Digital Games

29.07.2016 | Event News

GROWING IN CITIES - Interdisciplinary Perspectives on Urban Gardening

15.07.2016 | Event News

SIGGRAPH2016 Computer Graphics Interactive Techniques, 24-28 July, Anaheim, California

15.07.2016 | Event News

 
Latest News

Vortex laser offers hope for Moore's Law

29.07.2016 | Power and Electrical Engineering

Novel 'repair system' discovered in algae may yield new tools for biotechnology

29.07.2016 | Life Sciences

Clash of Realities 2016: 7th Conference on the Art, Technology and Theory of Digital Games

29.07.2016 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>