Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How a molecular Superman protects the genome from damage

17.10.2014

Scientists find a new role for RNAi protein Dicer in preventing collisions during DNA replication

How many times have we seen Superman swoop down from the heavens and rescue a would-be victim from a rapidly oncoming train?

How Dicer Protects the Yeast Genome from Damage

CSHL scientists have found a new role for the RNAi protein Dicer in preserving genomic stability in yeast. Dicer helps prevent collisions between transcription and replication machinery as the genetic material is copied. In cells that lack Dicer, DNA damage accumulates strikingly (yellow spots in the cells above), leading to DNA rearrangements that are associated with aging and disease.

Credit: Cold Spring Harbor Laboratory/ Jie Ren and Stephen Hearn

It's a familiar scenario, played out hundreds of times in the movies. But the dramatic scene is reenacted in real life every time a cell divides. In order for division to occur, our genetic material must be faithfully replicated by a highly complicated machine, whose parts are tiny enough to navigate among the strands of the double helix.

The problem is that our DNA is constantly in use, with other molecular machines continually plucking at its strands to gain access to critical genes. In this other process, known as transcription, the letters of our DNA are being copied to form a template that will guide the formation of proteins. But these two copying machines can't occupy the same bit of genetic track at once. Inevitably they will collide – unless a molecular Superman can remove the transcription machinery and save the day.

Cold Spring Harbor Laboratory (CSHL) scientists have found that this molecular Superman exists in the form of a protein known as Dicer. Better known for its role in selectively silencing genes via a process called RNA interference (RNAi), Dicer is now understood to help free transcription machinery from DNA so that replication can occur.

The team, led by Robert Martienssen, a CSHL Professor and Howard Hughes Medical Institute Investigator, concludes that this previously unknown function of Dicer is critical to preserve the integrity of the genome in yeast. They point out that collisions between the replication and transcription machinery lead to massive changes across the genome – changes that are associated with aging and diseases like cancer.

Martienssen and his colleagues previously found that RNAi resolves the conflict between transcription and DNA replication in isolated areas of the genome where genes are being silenced. "When Dicer is mutated, replication stalls and DNA in the region becomes damaged," explains Martienssen. "This was a new role for a protein that we thought functioned solely in RNAi."

In work published today in Cell, Martienssen and his team explored if and how Dicer might function more broadly, across the entire genome. The team, including lead authors Stephane Castel, Ph.D., a graduate of the CSHL Watson School of Biological Sciences, and Jie Ren, Ph.D., a postdoctoral researcher, found that Dicer participates in the release of transcription machinery throughout the genome. "Dicer's function isn't restricted to silenced genes," explains Ren. In fact, it controls the release at hundreds of extremely active genes.

"These are genes that are in constant use by the cell – we call many of them 'housekeeping' genes because they are required for basic survival," says Castel. At any given time, transcription machinery can be found near these genes. Without the help of Dicer, this machinery is headed for an almost certain collision when replication occurs.

Are these collisions really so catastrophic for the cell? The team found that the accidents cause massive segments of DNA to be lost with each cell division. "These chromosome rearrangements, known as genomic instability, are involved in aging and cancer," says Ren. Other groups have shown that mutations in Dicer are similarly associated with an increased risk of tumor formation. The team's discovery may help to explain these observations, according to Martienssen. "It may be that Dicer's role in cancer is to protect the genome by preventing collisions between transcription and replication."

This work was supported by the Natural Sciences and Engineering Research Council of Canada, the Spanish Ministerio de Economía y Competitividad, the National Institutes of Health, the Howard Hughes Medical Institute-Gordon and Betty Moore Foundation, as well as a Cashin Scholarship from the Watson School of Biological Sciences and assistance from the Cold Spring Harbor Laboratory Shared Resources, which are funded in part by the Cancer Center Support Grant.

"Dicer Promotes Transcription Termination at Sites of Replication Stress to Maintain Genome Stability" appears online in Cell on October 16, 2014. The authors are: Stephane Castel, Jie Ren, Sonali Bhattacharjee, An-Yun Chang, Mar Sánchez, Alberto Valbuena, Francisco Antequera, and Robert Martienssen. The paper can be obtained online at: http://www.cell.com

About Cold Spring Harbor Laboratory

Founded in 1890, Cold Spring Harbor Laboratory (CSHL) has shaped contemporary biomedical research and education with programs in cancer, neuroscience, plant biology and quantitative biology. CSHL is ranked number one in the world by Thomson Reuters for the impact of its research in molecular biology and genetics. The Laboratory has been home to eight Nobel Prize winners. Today, CSHL's multidisciplinary scientific community is more than 600 researchers and technicians strong and its Meetings & Courses program hosts more than 12,000 scientists from around the world each year to its Long Island campus and its China center. For more information, visit http://www.cshl.edu

Jaclyn Jansen | Eurek Alert!

Further reports about: DNA Laboratory RNAi collisions damage function genes replication transcription

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>