Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hot off the Press

15.04.2011
Nanoscale Gutenberg-style printing

When Gutenberg developed the principles of modern book printing, books became available to the masses. Hoping to bring technology capable of mass production to the nanometer scale, Udo Bach and this team of scientists at Monash University (Australia) and the Lawrence Berkeley National Laboratory (USA) have developed a nanoprinting process modeled on Gutenberg’s printing method.

Their goal is the simple, inexpensive production of nanotechnological components for solar cells, biosensors, and other electronic systems. As the researchers report in the journal Angewandte Chemie, their “ink” consists of gold nanoparticles, and the specific bonding between DNA molecules ensures its transfer to the substrate.

Nanopatterns with extremely high resolution are not difficult to produce with today’s technology. However, the methods used so far are analogous those used to produce the hand-written books of the era before Gutenberg; they are too slow and work-intensive for commercial fabrication. “New nanoprinting techniques offer an interesting solution,” says Bach. Along with co-workers, he has developed a process that works with a reusable “printing plate”.

The printing plate is a silicon wafer—like those used for the production of computer chips—that has been coated with a photoresist and covered with a mask. The wafer is then exposed to an electron beam (electron beam lithography). In the areas exposed to the beam, the photoresist is removed, exposing the wafer for etching. The wafer is then coated with gold. When the photoresist layer is removed, the gold only sticks to the etched areas.

Polyethylene glycol chains are then bound specifically to the gold through sulfur–hydrogen groups. The chains have positively charged amino groups at their ends. The completed printing plate is then dipped into the “ink”, a solution of gold nanoparticles coated with negatively charged DNA molecules. Electrostatic attraction causes the DNA to stick to the amino groups, binding the gold nanoparticles to the gold-patterned areas of the printing plate.

The “paper” is a silicon wafer coated with a whisper-thin gold film and a layer of DNA. These DNA strands are complementary to those on the gold nanoparticles, with which they pair up to form double strands.

This type of bond is stronger than the electrostatic attraction between the DNA and the amino groups. When the “paper” is pressed onto the “printing plate” and then removed, the gold nanoparticles from the ink remain stuck to the “paper” in the desired pattern. The “printing plate” can be cleaned and reused multiple times. Says Bach: “Our results demonstrate that it is possible to produce affordable printed elements based on nanoparticles.”

Author: Udo Bach, Monash University, Clayton (Australia), http://eng.monash.edu.au/materials/about/people/profile/udobach
Title: Gutenberg-Style Printing of Self-Assembled Nanoparticle Arrays: Electrostatic Nanoparticle Immobilization and DNA-Mediated Transfer

Angewandte Chemie International Edition 2011, 50, No. 19, Permalink to the article: http://dx.doi.org/10.1002/anie.201006991

Udo Bach | Angewandte Chemie
Further information:
http://pressroom.angewandte.org
http://eng.monash.edu.au/materials/about/people/profile/udobach

More articles from Life Sciences:

nachricht Oestrogen regulates pathological changes of bones via bone lining cells
28.07.2017 | Veterinärmedizinische Universität Wien

nachricht Programming cells with computer-like logic
27.07.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

New 3-D imaging reveals how human cell nucleus organizes DNA and chromatin of its genome

28.07.2017 | Health and Medicine

Heavy metals in water meet their match

28.07.2017 | Power and Electrical Engineering

Oestrogen regulates pathological changes of bones via bone lining cells

28.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>