Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hot new manufacturing tool: A temperature-controlled microbe

17.04.2012
Many manufacturing processes rely on microorganisms to perform tricky chemical transformations or make substances from simple starting materials.

The authors of a study appearing in mBio®, the online open-access journal of the American Society for Microbiology, on April 17 have found a way to control a heat-loving microbe with a temperature switch: it makes a product at low temperatures but not at high temperatures. The innovation could make it easier to use microorganisms as miniature factories for the production of needed materials like biofuels.

This is the first time a targeted modification of a hyperthermophile (heat-loving microorganism) has been accomplished, say the authors, providing a new perspective on engineering microorganisms for bioproduct and biofuel formation.

Originally isolated from hot marine sediments, the hyperthermophile Pyrococcus furiosus grows best at temperatures around 100ºC (212ºF). P. furiosus is an archaeon, single-celled organisms that bear a resemblance to bacteria, but they excel at carrying out many processes that bacteria cannot accomplish. Like other hyperthermophiles, P. furiosus' enzymes are stable at the high temperatures that facilitate many industrial processes, making it a well-used tool in biotechnology and manufacturing. But not all products can be made at high heat. Some enzymes will only work at lower temperatures.

In the study in mBio®, the authors inserted a gene from another organism into P. furiosus and coaxed it to use that gene to make a new product by simply lowering the temperature. The donor organism, Caldicellulosiruptor bescii, prefers to grow at a relatively cool 78ºC, so the protein product of its gene, lactate dehydrogenase, is most stable at that comparatively low temperature.

The authors of the study inserted the lactate dehyrogenase gene into a strategic spot, right next to a cold shock promoter that "turns on" the genes around it when P. furiosus is out in the cold at 72ºC. This essentially gives scientists a switch for controlling lactate production: put the organism at 72ºC to turn on lactate production, restore it to 100ºC to turn it off, thus preventing the need for chemical inducers. What's more, since P. furiosus is mostly shut down at these lower temperatures, making the new product doesn't interfere with its metabolism, or vice-versa.

The lead author on the study, Michael Adams of the Department of Biochemistry & Molecular Biology at the University of Georgia, explains that this is the key benefit of this system: although P. furiosus now makes the enzyme that carries out the process, at these lower temperatures the organism's other metabolic processes don't get in the way.

"The hyperthermophile is essentially the bioreactor that contains the foreign enzymes," says Adams. P. furiosus just supplies cofactors and a cytoplasmic environment for the highly active foreign enzymes, according to Adams. This makes for a cleaner, more controllable reaction.

mBio® is an open access online journal published by the American Society for Microbiology to make microbiology research broadly accessible. The focus of the journal is on rapid publication of cutting-edge research spanning the entire spectrum of microbiology and related fields. It can be found online at http://mBio.asm.org.

The American Society for Microbiology is the largest single life science society, composed of over 39,000 scientists and health professionals. ASM's mission is to advance the microbiological sciences as a vehicle for understanding life processes and to apply and communicate this knowledge for the improvement of health and environmental and economic well-being worldwide.

Jim Sliwa | EurekAlert!
Further information:
http://www.asmusa.org
http://mBio.asm.org

More articles from Life Sciences:

nachricht The dense vessel network regulates formation of thrombocytes in the bone marrow
25.07.2017 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

nachricht Fungi that evolved to eat wood offer new biomass conversion tool
25.07.2017 | University of Massachusetts at Amherst

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>