Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hormone improves long-term recovery from stroke

17.05.2011
Scientists at the Sahlgrenska Academy have discovered an explanation of how stroke patients can achieve better recovery. A hormone that is associated with the growth hormone system has proved to benefit recovery during the later phases of rehabilitation after a stroke.

Insulin-like growth factor I, IGF-I, is a hormone that is found in the blood and contributes to, among other things, growth and bone mass. The levels of this hormone are higher in people who exercise regularly and those with good health.

Scientists at the Sahlgrenska Academy have shown for the first time that high levels of this hormone are associated with better long-term recovery after a stroke. The study has been presented in an article in the Journal of Clinical Endocrinology and Metabolism.

“This study is interesting for two reasons. The first is that we show that a hormone is associated with improved long-term recovery, and thus there is still the prospect of improvement – even after three months after the stroke. The second is that levels of this hormone are known to be elevated in those who exercise often”, says Associate Professor David Åberg at the Sahlgrenska Academy, who has led the study in collaboration with Professor Jörgen Isgaard.

“It is, however, important to add that the levels of IGF-I are controlled also by other factors such as other growth hormones, heredity and nutrition”, emphasises David Åberg.

The study is based on 407 patients who are participating in the SAHLSIS study at the Sahlgrenska Academy, in which people aged 18-70 years who are affected by stroke are followed up for two years after the event. SAHLSIS is an acronym for “The Sahlgrenska Academy Study on Ischemic Stroke”.

Scientists have measured the levels of IFG-I in these 407 patients and seen that increased levels are associated with better recovery, when the degree of recovery is determined between 3 and 24 months after the stroke. Previous research (Bondanelli et al) has also shown a positive effect of high IGF-I levels in the early phase after a stroke, while the scientists at the Sahlgrenska Academy have now demonstrated that the positive effects on recovery remain long after the stroke event.

“Our results may explain why patients who exercise more actively, with physiotherapy and physical exercise, demonstrate better recovery after a stroke. Unfortunately, we do not know how much our patients exercised after the stroke. This means that we need to carry out further studies in which we measure both the amount of physical activity and the levels of IGF-I, in order to understand the exact relationships better”, David Åberg points out.

These results pave the way for further studies on whether drug treatments that raise IGF-I levels can improve long-term recovery after stroke. David Åberg believes that two avenues are open: either to treat with IGF-I, or to treat with the better known growth hormone (GH). This can stimulate the body’s own production of IGF-I.

“Of course, these possibilities must be tested in carefully constructed clinical trials, so that we discover any undesired effects that must be considered. This is particularly true during the acute phase of a stroke, while treatment during the recovery phase is probably easier and has greater benefit”, says David Åberg.

The journal: The Journal of Clinical Endocrinology and Metabolism
Title of the article: “Serum IGF-I Levels Correlate to Improvement of Functional Outcome after Ischemic Stroke”.
Authors: Daniel Åberg, Katarina Jood, Christian Blomstrand, Christina Jern,
Michael Nilsson, Jörgen Isgaard, and N. David Åberg
For more information, contact:
David Åberg, licensed doctor and associate professor at the Sahlgrenska Academy, tel. +46(0)31 3428 422, +46(0)73 6185 196, e-mail: david.aberg@medic.gu.se

Helena Aaberg | idw
Further information:
http://www.gu.se

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>