Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hormone improves long-term recovery from stroke

17.05.2011
Scientists at the Sahlgrenska Academy have discovered an explanation of how stroke patients can achieve better recovery. A hormone that is associated with the growth hormone system has proved to benefit recovery during the later phases of rehabilitation after a stroke.

Insulin-like growth factor I, IGF-I, is a hormone that is found in the blood and contributes to, among other things, growth and bone mass. The levels of this hormone are higher in people who exercise regularly and those with good health.

Scientists at the Sahlgrenska Academy have shown for the first time that high levels of this hormone are associated with better long-term recovery after a stroke. The study has been presented in an article in the Journal of Clinical Endocrinology and Metabolism.

“This study is interesting for two reasons. The first is that we show that a hormone is associated with improved long-term recovery, and thus there is still the prospect of improvement – even after three months after the stroke. The second is that levels of this hormone are known to be elevated in those who exercise often”, says Associate Professor David Åberg at the Sahlgrenska Academy, who has led the study in collaboration with Professor Jörgen Isgaard.

“It is, however, important to add that the levels of IGF-I are controlled also by other factors such as other growth hormones, heredity and nutrition”, emphasises David Åberg.

The study is based on 407 patients who are participating in the SAHLSIS study at the Sahlgrenska Academy, in which people aged 18-70 years who are affected by stroke are followed up for two years after the event. SAHLSIS is an acronym for “The Sahlgrenska Academy Study on Ischemic Stroke”.

Scientists have measured the levels of IFG-I in these 407 patients and seen that increased levels are associated with better recovery, when the degree of recovery is determined between 3 and 24 months after the stroke. Previous research (Bondanelli et al) has also shown a positive effect of high IGF-I levels in the early phase after a stroke, while the scientists at the Sahlgrenska Academy have now demonstrated that the positive effects on recovery remain long after the stroke event.

“Our results may explain why patients who exercise more actively, with physiotherapy and physical exercise, demonstrate better recovery after a stroke. Unfortunately, we do not know how much our patients exercised after the stroke. This means that we need to carry out further studies in which we measure both the amount of physical activity and the levels of IGF-I, in order to understand the exact relationships better”, David Åberg points out.

These results pave the way for further studies on whether drug treatments that raise IGF-I levels can improve long-term recovery after stroke. David Åberg believes that two avenues are open: either to treat with IGF-I, or to treat with the better known growth hormone (GH). This can stimulate the body’s own production of IGF-I.

“Of course, these possibilities must be tested in carefully constructed clinical trials, so that we discover any undesired effects that must be considered. This is particularly true during the acute phase of a stroke, while treatment during the recovery phase is probably easier and has greater benefit”, says David Åberg.

The journal: The Journal of Clinical Endocrinology and Metabolism
Title of the article: “Serum IGF-I Levels Correlate to Improvement of Functional Outcome after Ischemic Stroke”.
Authors: Daniel Åberg, Katarina Jood, Christian Blomstrand, Christina Jern,
Michael Nilsson, Jörgen Isgaard, and N. David Åberg
For more information, contact:
David Åberg, licensed doctor and associate professor at the Sahlgrenska Academy, tel. +46(0)31 3428 422, +46(0)73 6185 196, e-mail: david.aberg@medic.gu.se

Helena Aaberg | idw
Further information:
http://www.gu.se

More articles from Life Sciences:

nachricht The dense vessel network regulates formation of thrombocytes in the bone marrow
25.07.2017 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

nachricht Fungi that evolved to eat wood offer new biomass conversion tool
25.07.2017 | University of Massachusetts at Amherst

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>