Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hopkins Team Discovers How DNA Changes

15.04.2011
Newly revealed process has implications for understanding cancers, psychiatric disorders and neurodegenerative diseases

Using human kidney cells and brain tissue from adult mice, Johns Hopkins scientists have uncovered the sequence of steps that makes normally stable DNA undergo the crucial chemical changes implicated in cancers, psychiatric disorders and neurodegenerative diseases. The process may also be involved in learning and memory, the researchers say.

A report on their study appears online April 14 in Cell.

While DNA is the stable building block of all of an individual’s genetic code, or genome, the presence or absence of a methyl group at specific locations chemically alters DNA and changes the expression of the genes. In a series of experiments, the Johns Hopkins team identified a step-by-step process involving a previously unknown step and two molecules for DNA to change from a methylated to demethylated state. Both methylation and demethylation have long been linked to genetic alterations and a wide range of diseases.

“Anything we can learn from these studies about how to manipulate the process of changing DNA methylation status is going to have implications for human development and disease, including cancer and degenerative disorders,” says Hongjun Song, Ph.D., professor of neurology and neuroscience and director of the Stem Cell Program in the Institute for Cell Engineering, the Johns Hopkins University School of Medicine.

First, using human kidney cells in a dish, the Hopkins team focused its investigation on a tiny region of DNA in the cells’ nuclei, specifically watching the actions of one particular chemical base known as cytosine (C). The team added different chemicals to force methylation changes and after watching the fate of methylated cytosine (mC) for two days, and noting that nothing had changed, they then added a protein called TET1 to the cell. As a result, some of the mC became hydroxylmethylated (hmC) and some reverted to plain C, indicating loss of the methyl-group from C in the DNA.

“What this told us was TET1 promotes this process of DNA changing status from methylated to demethylated,” Song says.

While only about five percent of human cells progress from hmC to C under natural conditions, the researchers found they could enhance the demethylation process by adding another protein called Apobec1.

“That suggested another clear step in DNA demethylation,” Song says. “Cells go from mC to hmC by TET1, and then from hmC to C involving Apobec 1.”

Next, they followed up on their own previously published work showing that electrical stimulation like that used in electroconvulsive therapy (ECT) resulted in increased brain cell growth in mice, which likely was an effect of changes in DNA methylation status. The researchers used a genetic tool and PCR-based approach to amplify a tiny region of the genome in dozens of mice, some exposed to ECT-like electrical stimulation and some not, to compare the status of cytosine at similar stretches of DNA in brain tissue. By using genetic sequencing technology to analyze the various states of methylation – simple C, methylated C, or hydroxylmethlyated Cs – in the specific reigons of DNA from brain cells of ECT-exposed mice versus other animals, they found evidence that ECT indeed induces DNA demethylation and identified TET1 as a critical factor for this to happen.

“By identifying two molecules and tying together two pathways needed for DNA methylation status to change, we believe we have shown a unified mechanism that regulates DNA as it goes from a methylated state to a demethylated state,” Song says. “This new knowledge gives us an entry point to someday manipulating this fundamentally important process for treating patients with diseases associated with epigenetic abnormality.”

Support for this research came from the National Institutes of Health, Johns Hopkins Brain Science Institute, National Alliance for Research on Schizophrenia and Depression, and Adelson Medical Research Foundation

Authors of the paper, in addition to Hongjun Song are Junjie U. Guo, Yijing Su, Chun Zhong, and Guo-li Ming, all of Johns Hopkins.

On the Web:
Song lab: http://neuroscience.jhu.edu/HongjunSong.php
Cell: http://www.cell.com/current

Maryalice Yakutchik | Newswise Science News
Further information:
http://www.jhmi.edu

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>