Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hopkins Team Discovers How DNA Changes

15.04.2011
Newly revealed process has implications for understanding cancers, psychiatric disorders and neurodegenerative diseases

Using human kidney cells and brain tissue from adult mice, Johns Hopkins scientists have uncovered the sequence of steps that makes normally stable DNA undergo the crucial chemical changes implicated in cancers, psychiatric disorders and neurodegenerative diseases. The process may also be involved in learning and memory, the researchers say.

A report on their study appears online April 14 in Cell.

While DNA is the stable building block of all of an individual’s genetic code, or genome, the presence or absence of a methyl group at specific locations chemically alters DNA and changes the expression of the genes. In a series of experiments, the Johns Hopkins team identified a step-by-step process involving a previously unknown step and two molecules for DNA to change from a methylated to demethylated state. Both methylation and demethylation have long been linked to genetic alterations and a wide range of diseases.

“Anything we can learn from these studies about how to manipulate the process of changing DNA methylation status is going to have implications for human development and disease, including cancer and degenerative disorders,” says Hongjun Song, Ph.D., professor of neurology and neuroscience and director of the Stem Cell Program in the Institute for Cell Engineering, the Johns Hopkins University School of Medicine.

First, using human kidney cells in a dish, the Hopkins team focused its investigation on a tiny region of DNA in the cells’ nuclei, specifically watching the actions of one particular chemical base known as cytosine (C). The team added different chemicals to force methylation changes and after watching the fate of methylated cytosine (mC) for two days, and noting that nothing had changed, they then added a protein called TET1 to the cell. As a result, some of the mC became hydroxylmethylated (hmC) and some reverted to plain C, indicating loss of the methyl-group from C in the DNA.

“What this told us was TET1 promotes this process of DNA changing status from methylated to demethylated,” Song says.

While only about five percent of human cells progress from hmC to C under natural conditions, the researchers found they could enhance the demethylation process by adding another protein called Apobec1.

“That suggested another clear step in DNA demethylation,” Song says. “Cells go from mC to hmC by TET1, and then from hmC to C involving Apobec 1.”

Next, they followed up on their own previously published work showing that electrical stimulation like that used in electroconvulsive therapy (ECT) resulted in increased brain cell growth in mice, which likely was an effect of changes in DNA methylation status. The researchers used a genetic tool and PCR-based approach to amplify a tiny region of the genome in dozens of mice, some exposed to ECT-like electrical stimulation and some not, to compare the status of cytosine at similar stretches of DNA in brain tissue. By using genetic sequencing technology to analyze the various states of methylation – simple C, methylated C, or hydroxylmethlyated Cs – in the specific reigons of DNA from brain cells of ECT-exposed mice versus other animals, they found evidence that ECT indeed induces DNA demethylation and identified TET1 as a critical factor for this to happen.

“By identifying two molecules and tying together two pathways needed for DNA methylation status to change, we believe we have shown a unified mechanism that regulates DNA as it goes from a methylated state to a demethylated state,” Song says. “This new knowledge gives us an entry point to someday manipulating this fundamentally important process for treating patients with diseases associated with epigenetic abnormality.”

Support for this research came from the National Institutes of Health, Johns Hopkins Brain Science Institute, National Alliance for Research on Schizophrenia and Depression, and Adelson Medical Research Foundation

Authors of the paper, in addition to Hongjun Song are Junjie U. Guo, Yijing Su, Chun Zhong, and Guo-li Ming, all of Johns Hopkins.

On the Web:
Song lab: http://neuroscience.jhu.edu/HongjunSong.php
Cell: http://www.cell.com/current

Maryalice Yakutchik | Newswise Science News
Further information:
http://www.jhmi.edu

More articles from Life Sciences:

nachricht Fingerprint' technique spots frog populations at risk from pollution
27.03.2017 | Lancaster University

nachricht Parallel computation provides deeper insight into brain function
27.03.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>